Análise de Provas de Carga Estática em Estacas Pré-Moldadas Cravadas na Cidade de Curitiba e Região Metropolitana

Ana Paula Fontana Vianna

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Geotecnia.

Orientador: Prof. Dr. José Carlos A. Cintra

São Carlos 2000

Folha de Aprovação

Dissertação defendida e aprovada em ____/___/____ pela comissão julgadora

(Assinatura)

(Nome/Instituição)

(Assinatura) (Nome/Instituição)

(Assinatura)

(Nome/Instituição)

Coordenador da Área

Presidente da CPG

"Aplausos, quando não fundamentam o mérito, afagam certamente o espírito e dão algum verniz de celebridade; mas quem tem vontade de aprender e quer fazer alguma coisa, prefere a lição que melhora ao ruído que lisonjeia"

Machado de Assis

Ao meu pai, Ernani, e meus tios Neusa e Cesar, os meus exemplos de vida.

AGRADECIMENTOS

A Deus pelo dom da vida e a oportunidade de aprendizado todos os dias.

Ao Prof. Dr José Carlos A. Cintra pela amizade, orientação e estimulo.

Ao CNPq pela concessão da bolsa de estudo.

Ao Departamento de Geotecnia da Escola de Engenharia de São Carlos (EESC/USP) pela infra estrutura oferecida para o programa de pósgraduação, através do quadro de docentes e funcionários.

Ao Prof. Dr. Nelson Aoki pelas sugestões e ensinamentos transmitidos.

Aos professores Paulo Roberto Chamecki e Alessander Morales Kormann pelo incentivo e sugestões.

Ao Eng.º Adalberto B. T. Amaral (Estacas Benapar S/A) pela cessão dos resultados das provas de carga.

Ao engenheiro Herivelto pelos serviços de informática prestados.

As minhas grandes amigas Ana Carina, Kênia, Sandra, e Túlia por sempre estarem presente, me dando força e incentivando a seguir em frente.

SUMÁRIO

LISTA DE FIGURAS	iii
LISTA DE TABELAS	X
LISTA DE ABREVIATURAS E SIGLAS	xiii
LISTA DE SÍMBOLOS	xiv
RESUMO	xvi
ABSTRACT	xvii
1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	3
2.1 – ASPECTOS GEOGRÁFICOS	3
2.1.1 - Localização	3
2.1.2 - Topografia	3
2.1.3 - Uso e Ocupação do Solo	5
2.2 – ASPECTOS GEOLÓGICOS	8
2.2.1 - Bacia Sedimentar de Curitiba	9
2.2.2 - Processo de Formação	13
2.2.3 - Formação Tinguis	14
2.2.4 - Formação Guabirotuba	16
2.3 - ASPECTOS GEOTÉCNICOS	20
2.3.1 - Identificação de Campo	21
2.3.2 - Ensaios de Caracterização Laboratorial	25
2.3.3 - Parâmetros de Compressibilidade, Permeabilidade e Resistência	30
2.3.4 - Problemas Esperados	41
2.4 - PREVISÃO DA CAPACIDADE DE CARGA E INTERPRETAÇÃ	O DA
CURVA CARGA - RECALQUE	45
2.4.1 - Capacidade de Carga	45
2.4.2 - Interpretação da Curva Carga - recalque	50
3. MÉTODOS DE PREVISÃO DA CAPACIDADE DE CARGA	54
3.1 - MÉTODO AOKI - VELLOSO (1975)	57

5.1.1 - Tator de Correção Global	60
3.1.2 - Fator de Correção Parcial	
3.2 - MÉTODO DÉCOURT - QUARESMA	65
3.2.1 - Fator de Correção Global	65
3.2.2 - Fator de Correção Parcial	68
3.3- MÉTODO AMARAL	71
3.4- MÉTODO "COMPOSTO"	73
4. INTERPRETAÇÃO DA CURVA CARGA - RECALQUE	75
4.1 – MÉTODO DE VAN DER VEEN (1953)	75
4.2 - MÉTODO DE CHIN (1978)	
5. ESTIMATIVA DE RECALQUE E PREVISÃO DA CURVA	CARGA -
RECALQUE	83
5.1 – ESTIMATIVA DO RECALQUE	
5.1.1 - Parâmetros Elásticos do Terreno	
5.1.2 - Diagramas de Transferência de Carga	85
5.1.2 - Diagramas de Transferência de Carga5.1.3 - Encurtamento Elástico do Fuste	85 86
 5.1.2 - Diagramas de Transferência de Carga 5.1.3 - Encurtamento Elástico do Fuste 5.1.4 - Acréscimos de Tensões 	85 86 86
 5.1.2 - Diagramas de Transferência de Carga 5.1.3 - Encurtamento Elástico do Fuste 5.1.4 - Acréscimos de Tensões 5.2 - PREVISÃO DA CURVA CARGA - RECALQUE 	
 5.1.2 - Diagramas de Transferência de Carga 5.1.3 - Encurtamento Elástico do Fuste 5.1.4 - Acréscimos de Tensões 5.2 - PREVISÃO DA CURVA CARGA - RECALQUE	
 5.1.2 - Diagramas de Transferência de Carga 5.1.3 - Encurtamento Elástico do Fuste 5.1.4 - Acréscimos de Tensões 5.2 - PREVISÃO DA CURVA CARGA - RECALQUE	
 5.1.2 - Diagramas de Transferência de Carga	
 5.1.2 - Diagramas de Transferência de Carga	
 5.1.2 - Diagramas de Transferência de Carga	

- 11. ANEXO 4
- **12. ANEXO 5**

LISTA DE FIGURAS

FIGURA 2.1 - Associação entre malha urbana da Região Metropolitana de
Curitiba) e contexto regional (Siedlecki, 1998)4
FIGURA 2.2 – Distribuição da Formação Guabirotuba na RMC
(DNPM/MINEROPAR, 1989 apud Felipe, 1998)6
FIGURA 2.3 - Modelo digital do terreno visualizando os constituintes
litológicos da área estudada (Salamuni, 1998)8
FIGURA 2.4 – Bolsões de material orgânico que contém palinomorfos dentro de
argilitos da Formação Guabirotuba (Salamuni, 1998) 10
FIGURA 2.5 - Aspecto das alternâncias centimétricas de argilas e arcósios em
sedimentos argilosos da Formação Guabirotuba (Felipe <i>et al.,</i> 1994) 12
FIGURA 2.6 - Solo transportado separado por uma linha de seixos da
Formação Guabirotuba (Salazar Jr., 1996)15
FIGURA 2.7 - Modelo digital de terreno com a sobreposição dos litotipos
sedimentares da Bacia de Curitiba e do seu embasamento (Salamuni,
1998)
FIGURA 2.8 - Sondagens de simples reconhecimento na região de Araucária -
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i> , 1981)
 FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i>, 1981)
 FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.,</i> 1981)
 FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i>, 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i> , 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i> , 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad et al., 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad et al., 1981)
FIGURA 2.8 - Sondagens de simples reconhecimento na região de Araucária - PR (Massad <i>et al.</i> , 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i> , 1981)
FIGURA 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad <i>et al.</i> , 1981)

FIGURA 2.16 - Envoltória de resistência para o solo sedimentar da Bacia de
Curitiba (Nascimento, 1992)34
FIGURA 2.17 - Resistência à compressão simples e envoltória de cisalhamento
direto para o solo sedimentar da Bacia de Curitiba (Nascimento, 1992)35
FIGURA 2.18 – Ensaio triaxial rápido pré-adensado saturado por contrapressão
- argila cinza da Formação Guabirotuba (Massad <i>et al.,</i> 1981) 36
FIGURA 2.19 – Ensaio triaxial rápido pré-adensado saturado por contrapressão
- argila vermelha da Formação Tinguis (Massad <i>et al.,</i> 1981) 37
FIGURA 2.20 - Comparação simplificada entre comportamentos tensão x
deformação de argilas normalmente adensadas e pré-adensadas em condições
drenadas (Duarte, 1986)
FIGURA 2.21 – Ensaio de cisalhamento direto com grandes deformações para a
argila cinza da Formação Guabirotuba (Massad <i>et al.,</i> 1981) 40
FIGURA 2.22 – Envoltórias de resistência, em termos de tensões efetivas para o
solo da Formação Guabirotuba, obtidas através de ensaios de cisalhamento
direto com reversão múltipla (Duarte, 1986)41
FIGURA 2.23 - Movimento de massa gravitacional "rastejo" e suas
conseqüências no loteamento Santa Rosa em campina Grande do Sul (RMC)
(Felipe, 1998)43
FIGURA 2.24 - Aspecto do empastilhamento e trincas causados pela retração
nas argilas cinza-esverdeadas da Formação Guabirotuba (Feline <i>et al</i>
nas argnas eniza-esverdeadas da Formação Guabriotada (Fenpe et al.,
1994)
1994)
1994)
1135 arginas eniza-esveracidadas da Formação Guabirotaba (Fenpe et al., 1994)
 1994)
 1994)
Itas' arginas' chiza-csveracudas' da Formação1994)
Itas' arginas' ciriza-csverucadas' da Torinação Odabirotaba (renpe et al.,1994)

FIGURA 2.29 – Gráfico $\rho/p \ge \rho$ para uma estaca que sofreu danos estruturais
durante a cravação (Chin, 1978)53
FIGURA 2.30 – Gráfico $\rho/p \ge \rho$ para uma estaca que sofreu sérios danos na
ponta (Chin, 1978)53
FIGURA 3.1a - Comparação do método Aoki - Velloso com a carga última de
Van der Veen55
FIGURA 3.1b - Comparação do método Décourt - Quaresma com a carga
última de Van der Veen 55
FIGURA 3.1c - Comparação do método Amaral com a carga última de Van der
Veen
FIGURA 3.2 - Comparação do método Aoki - Velloso original e adaptado com
os valores da carga última de Van der Veen59
FIGURA 3.3 - Comparação do método Aoki - Velloso adaptado (R*) e do
método corrigido com o fator global (R') com a carga última de Van der Veen.62
FIGURA 3.4 - Comparação do método Aoki - Velloso adaptado (R*) e do
método Aoki - Velloso adaptado e corrigido com o fator parcial (R") com a
carga última de Van der Veen64
FIGURA 3.5 - Comparação do método Décourt - Quaresma original e do
corrigido como fator global com os valores da carga última de Van der Veen67
FIGURA 3.6 - Comparação do método Décourt - Quaresma original e do
corrigido com fator parcial com carga última de Van der Veen70
FIGURA 3.7 - Comparação do método Amaral original e do corrigido com fator
global com os valores da carga última de Van der Veen72
FIGURA 3.8 - Comparação do método composto com os valores da carga
última de Van der Veen74
FIGURA 5.1 – Diagrama de transferência de carga85
FIGURA 5.2 – Distribuição de pressões (Aoki, 1985)
FIGURA 5.3a – Comparação entre a curva prevista da estaca 03 para carga P_1 e
a curva experimental

FIGURA 5.3b – Comparação entre a curva prevista da estaca 03 para a carga P_2
e a curva experimental
FIGURA 5.3c – Comparação entre as curvas prevista da estaca 03 para carga P_3
e a curva experimental
FIGURA 5.3d - Comparação entre a curva ajustada pelos três pontos da estaca
03 e a curva experimental
FIGURA 5.4a – Comparação entre a curva prevista da estaca 06 para carga P_1 e
a curva experimental
FIGURA 5.4b – Comparação entre a curva prevista da estaca 06 para carga P_2 e
a curva experimental
FIGURA 5.4c – Comparação entre a curva prevista da estaca 06 para carga P_3 e
a curva experimental90
FIGURA 5.4d - Comparação entre a curva ajustada pelos três pontos da estaca
06 e a curva experimental 90
FIGURA 5.5a – Comparação entre a curva prevista da estaca 10 para carga P_1 e
a curva experimental90
a curva experimental 90 FIGURA 5.5b – Comparação entre a curva prevista da estaca 10 para carga P ₂ e
a curva experimental

FIGURA 5.7a – Comparação entre a curva prevista da estaca 15 para carga P_1 e
a curva experimental91
FIGURA 5.7b – Comparação entre a curva prevista da estaca 15 para carga P_2 e
a curva experimental91
FIGURA 5.7c – Comparação entre a curva prevista da estaca 15 para carga P_3 e
a curva experimental92
FIGURA 5.7d - Comparação entre a curva ajustada pelos três pontos da estaca
15 e a curva experimental92
FIGURA 5.8a – Comparação entre a curva prevista de estaca 17 para carga P_1 e
a curva experimental92
FIGURA 5.8b – Comparação entre a curva prevista da estaca 17 para carga P_2 e
a curva experimental92
FIGURA 5.8c – Comparação entre a curva prevista da estaca 17 para carga P_3 e
a curva experimental92
FIGURA 5.8d - Comparação entre a curva ajustada pelos três pontos da estaca
17 e a curva experimental92
17 e a curva experimental 92 FIGURA 5.9a – Comparação entre a curva prevista da estaca 20 para carga P ₁ e
17 e a curva experimental
 17 e a curva experimental
17 e a curva experimental
 17 e a curva experimental
17 e a curva experimental.92FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 ea curva experimental.93FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 ea curva experimental.93FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 ea curva experimental.9393FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 ea curva experimental.93
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93
17 e a curva experimental. 92 FIGURA 5.9a – Comparação entre a curva prevista da estaca 20 para carga P1 e 93 a curva experimental. 93 FIGURA 5.9b – Comparação entre a curva prevista da estaca 20 para carga P2 e 93 a curva experimental. 93 FIGURA 5.9b – Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c – Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c – Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d – Comparação entre a curvas ajustada pelos três pontosl da 93 FIGURA 5.10a – Comparação entre a curva prevista da estaca 21 para carga P1 e 93
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93 FIGURA 5.10a - Comparação entre a curva prevista da estaca 21 para carga P1 e 93 A curva experimental. 93 93 93 94 94 95 95 96 96 97 97 98 98 99 99 99 90 90 93 91 94 92 95 93 96 94 97 95 98 96 99 97 98 98 99 99 99
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 a curva experimental. 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93 FIGURA 5.10a - Comparação entre a curva prevista da estaca 21 para carga P1 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 a curva experimental. 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93 estaca 20 e a curva experimental. 93 FIGURA 5.10a - Comparação entre a curva prevista da estaca 21 para carga P1 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93
17 e a curva experimental. 92 FIGURA 5.9a - Comparação entre a curva prevista da estaca 20 para carga P1 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9b - Comparação entre a curva prevista da estaca 20 para carga P2 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9c - Comparação entre a curvas prevista da estaca 20 para carga P3 e 93 FIGURA 5.9d - Comparação entre a curvas ajustada pelos três pontosl da 93 FIGURA 5.9d - Comparação entre a curva prevista da estaca 21 para carga P1 e 93 FIGURA 5.10a - Comparação entre a curva prevista da estaca 21 para carga P1 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10b - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10c - Comparação entre a curva prevista da estaca 21 para carga P2 e 93 FIGURA 5.10c - Comparação entre a curva prevista da estaca 21 para carga P3 e 93

FIGURA 5.10d - Comparação entre a curva ajustada pelos três pontos da estaca
21 e a curva experimental94
FIGURA 5.11a – Comparação entre a curva prevista da estaca 23 para carga P ₁ e
a curva experimental93
FIGURA 5.11b - Comparação entre a curva prevista da estaca 23 para carga R ₂
e a curva experimental93
FIGURA 5.11c – Comparação entre a curvas prevista da estaca 23 para carga P ₃
e a curva experimental94
FIGURA 5.11d - Comparação entre a curva ajustada pelos três pontos da estaca
23 e a curva experimental94
FIGURA 5.12a – Comparação entre a curva prevista da estaca 25 para carga P ₁ e
a curva experimental95
FIGURA 5.12b – Comparação entre a curva prevista da estaca 25 para carga P_2
e a curva experimental95
FIGURA 5.12c – Comparação entre a curva prevista da estaca 25 para carga P_3 e
a curva experimental95
a curva experimental

FIGURA 5.14c – Comparação entre a curva prevista da estaca 31 para carga P_3 e
a curva experimental96
FIGURA 5.14d - Comparação entre a curva ajustada pelos três pontos da estaca
31 e a curva experimental96
FIGURA 5.15a – Comparação entre a curva prevista da estaca 33 para carga P_1 e
a curva experimental97
FIGURA 5.15b – Comparação entre a curva prevista da estaca 33 para carga P_2
e a curva experimental97
FIGURA 5.15c – Comparação entre a curva prevista da estaca 33 para carga P_3 e
a curva experimental97
FIGURA 5.15d - Comparação entre a curva ajustada pelos três pontos da estaca
33 e a curva experimental97
FIGURA 5.16a – Comparação entre a curva prevista da estaca 34 para carga P ₁ e
a curva experimental97
FIGURA 5.16b - Comparação entre a curva prevista da estaca 34 para carga P ₂
e a curva experimental97
FIGURA 5.16c – Comparação entre a curva prevista da estaca 34 para carga P ₃ e
a curva experimental98
FIGURA 5.16d - Comparação entre a curva ajustada pelos três pontos da estaca
34 e a curva experimental

LISTA DE TABELAS

TABELA 2.1 - Análise granulométrica para o solo da Formação Tinguis em
termos percentuais (Duarte, 1986)26
TABELA 2.2 - Análise granulométrica para o solo da Formação Guabirotuba
em termos percentuais (Duarte, 1986)26
TABELA 2.3 – Valores de ρ , ρ_s , w_L , w_p , IP, w_{nat} e e_o para os solos da Formação
Tinguis e Formação Guabirotuba28
TABELA 2.4 - Resultados dos ensaios de expansão livre para amostras no
estado natural e secas ao ar (Pereira, 1999)29
TABELA 2.5 - Resultados dos ensaios de pressão de expansão (Pereira,
1999) 29
TABELA 2.6 - Contração das amostras secas ao ar retiradas para os ensaios de
pressão de expansão (Pereira, 1999)29
TABELA 2.7 – Dados iniciais do ensaio e coeficientes de compressibilidade do
solo da Formação Guabirotuba (Duarte, 1986)30
TABELA 2.8 – Valores de c_v , E_{ed} e k estimados a partir das curvas recalque x log
tempo de ensaios edométricos (Duarte, 1986)32
TABELA 2.9 – Índices físicos iniciais (Massad <i>et al.,</i> 1981)
TABELA 2.10 – Valores do coeficiente K
TABELA 3.1 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu para cada método57
TABELA 3.2 - Características das estacas ensaiadas até a ruptura
TABELA 3.3 - Valores da média, desvio padrão e coeficiente de variação das
relações R/Pu e R*/Pu para o método Aoki - Velloso59
TABELA 3.4 -Valores das resistências de ponta, lateral e de ruptura obtidos
pelo método Aoki – Velloso adaptado60
TABELA 3.5 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu para as provas que atingiram a ruptura61

TABELA 3.6 - Valores da média, desvio padrão e coeficiente de variação das
relações R*/Pu e R'/Pu62
TABELA 3.7 - Valores da média, desvio padrão e coeficiente de variação da
relação $\mathbf{R}_{\ell}^{"}$ / \mathbf{R}_{ℓ}^{*} para as provas que atingiram a ruptura63
TABELA 3.8 - Valores da média, desvio padrão e coeficiente de variação da
relação R*/Pu e R''/Pu65
TABELA 3.9 - Valores das resistências de ponta, lateral e de ruptura obtidos
pelo método Décourt - Quaresma66
TABELA 3.10 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu para as provas que atingiram a ruptura66
TABELA 3.11 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu e R'/Pu68
TABELA 3.12 - Valores recalculados da resistência de ponta
TABELA 3.13 - Valores da média, desvio padrão e coeficiente de variação da
relação $\mathbf{R}_{\mathbf{p}}^{''}/R_{p}$ para as provas que atingiram a ruptura69
TABELA 3.14 - Valores da média, desvio padrão e coeficiente de variação da
relações R/Pu e R″/Pu 70
TABELA 3.15 - Valores da resistência de ponta, lateral e de ruptura do método
Amaral
TABELA 3.16 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu para as provas que atingiram a ruptura71
TABELA 3.17 - Valores da média, desvio padrão e coeficiente de variação das
relações R/Pu e R"/Pu73
TABELA 3.18 - Valores da média, desvio padrão e coeficiente de variação da
relação R/Pu74
TABELA 4.1 - Carga última de Van der Veen (Pu, em kN) com o avanço do
ensaio77
TABELA 4.2 – Variação (em %) da carga última de Van der Veen em relação ao
estágio anterior78

TABELA 4.3 – Erro (em %) na carga última em cada estágio em relação ao valor
experimental78
TABELA 4.4a - Variação da carga última de Van der Veen entre os dois últimos
estágios ($ \Delta Pu \le 10\%$)80
TABELA 4.4b - Variação da carga última de Van der Veen entre os dois últimos
estágios ($ \Delta Pu > 10\%$)
TABELA 5.1 – Valores da relação ρ_c / ρ_m para as cargas P ₁ , P ₂ e P ₃ 88
TABELA 5.2 – Distância entre a ponta da estaca e o limite inferior da sondagem
(h)99

LISTA DE ABREVIATURAS E SIGLAS

CPTU	Ensaio de Penetração de Cone com Medida de pressão Neutra
DPL	Penetrômetro Dinâmico Leve
IP	Índice de plasticidade
ISRM	International Society of Rock Mechanics
RMC	Região Metropolitana de Curitiba
RSA	Razão de Sobreadensamento
SPT	Standart Penetration Test
UFPR	Universidade Federal do Paraná

LISTA DE SÍMBOLOS

ρ	Recalque
ϕ_{μ}	Ângulo de atrito intrínseco
$\Delta\sigma_i$	Acréscimo de tensão vertical
σ_{ad}	Pressão de pré-adensamento
ρ_c	Recalque calculado
$ ho_m$	Recalque medido
σ_n	Tensão vertical
φr	Ângulo de atrito residual
$ ho_{s}$	Massa específica dos sólidos
a	Coeficiente de forma da curva de Van der Veen
A _p	Área de ponta
b	Intercepto no eixo dos recalques da curva de Van der Veen
Cc	Índice de compressão
Ce	Índice de expansão
Cv	Coeficiente de adensamento
D	Diâmetro das estacas
Ec	Módulo de elasticidade da estaca
Eed	Módulo de deformabilidade confinado efetivo
eo	Índice de vazios inicial
$\mathbf{f}_{\mathbf{c}}$	Atrito lateral unitário
h	Distância entre a ponta da estaca e o limite inferior da sondagem
h_i	Distância entre o centro da camada i, ao longo do fuste, e o centro da
	camada j abaixo da ponta da estaca
hj	Distância entre a ponta da estaca e o centro da camada j
k	Coeficiente de permeabilidade
Κ	Coeficiente de Aoki - Velloso
ℓ_{i}	Espessura da camada i
L	Comprimento das estacas

- N_p SPT médio na ponta da estaca
- N_{ℓ} SPT médio no fuste da estaca
- P Carga aplicada no topo da estaca
- $\overline{P_e}$ Carga nominal admissível estruturalmente
- q_c Resistência de ponta do cone
- Qi Esforço normal na estaca na cota correspondente ao topo da camada i
- R Capacidade de carga
- R* Capacidade de carga obtida pelo método adaptado
- R' Capacidade de carga obtida pelo fator de correção global
- R" Capacidade de carga obtida pelo fator de correção parcial
- R_p Carga de ponta
- R_p^* Carga de ponta obtida pelo método adaptado
- R'_p Carga de ponta obtida pelo fator de correção global
- $R_p^{"}$ Carga de ponta obtida pelo fator de correção parcial
- R_{ℓ} Carga lateral
- R_{ℓ}^{*} Carga lateral obtida pelo método adaptado
- $\mathbf{R}_{\ell}^{'}$ Carga lateral obtida pelo fator de correção global
- $R_{\ell}^{"}$ Carga lateral obtida pelo fator de correção parcial
- R_{ℓ_i} Parcela de atrito lateral na camada i
- So Grau de saturação inicial
- w_L Limite de liquidez
- w_{nat} Umidade natural
- α Coeficiente de Aoki Velloso em função do tipo de solo
- w_p Limite de plasticidade

RESUMO

Vianna, A. P. F. (2000) – Análise de Provas de Carga Estática em Estacas Prémoldadas Cravadas na Cidade de Curitiba e Região Metropolitana. Dissertação de Mestrado, USP / São Carlos.

Nesta dissertação são analisadas 34 provas de carga estática realizadas em estacas pré-moldadas de concreto, cravadas em diferentes locais da cidade de Curitiba e Região metropolitana, sendo a maioria delas na Formação Guabirotuba.

Três métodos de previsão da capacidade foram analisados: Aoki – Velloso (1975), Décourt – Quaresma (1978) e Amaral (1982, 1999). Para cada método foram propostos fatores de correção global e/ou parcial que tornam o valor da capacidade de carga mais próximo do valor da carga última obtida pelo critério de Van der Veen (1953).

Com base em quatro provas de carga conduzidas até a ruptura, estudou-se a aplicabilidade do método de Van der Veen (1953) e determinouse um critério para avaliar a extrapolação da curva carga x recalque em ensaios encerrados sem atingir a ruptura.

Finalmente fez-se uma análise dos recalques comparando-se os valores medidos com os calculados, para três níveis de carregamento, além da comparação das curvas carga x recalque ajustadas com as experimentais.

PALAVRAS CHAVES: Prova de carga, carga última, curva carga x recalque.

ABSTRACT

Vianna, A. P. F. (2000) – Analysis of static loading tests in concrete drive pile carried out in Curitiba City and Metropolitan Area. Dissertação de Mestrado, USP / São Carlos.

This Thesis presents the analysis of 34 static loading tests in concrete drive pile, located at different places of the Curitiba City and Metropolitan Area, in Guabirotuba Formation.

Three methods of the bearing capacity prediction were assessed: Aoki – Velloso (1975), Décourt – Quaresma (1978) and Amaral (1982,1999). For each method is proposed global correction factors and/or partial that turned the bearing capacity value close to the ultimate load obtained for the Van der Veen criteria (1953).

Based on four static loading test carried out to failure, the applicability of the Van der Veen criteria was assessed and was determined a rule to evaluate the extrapolation of the load - settlement curve in tests stopped before of the failure.

Finally, it was made an analysis of the settlements, where it was compared the observed values and the predicted values, for three loading level, and also a comparison between the experimental load-settlement curve and the predicted load-settlement curve.

KEYWORD: Static load test, ultimate load, load -settlement curve.

1. INTRODUÇÃO

Um estudo geotécnico da Formação Guabirotuba tem grande importância regional devido sua presença significativa na Região Metropolitana de Curitiba, englobando várias áreas da Capital (centro, bairros Água Verde, Batel e Juvevê, Centro Politécnico, Cidade Industrial, etc.) além de cidades próximas (Campo Largo, Araucária, Piraquara, Quatro Barras, São José dos Pinhais). Suas características e comportamento mecânico peculiares são fatores que enfatizam também a importância deste estudo.

O rápido desenvolvimento desta região, devido principalmente à instalação de grandes indústrias multinacionais e ao crescimento demográfico acelerado, trás à tona a necessidade de conhecer e entender melhor o comportamento deste tipo de solo de forma a evitar prejuízos materiais em obras de engenharia.

Muitos estudos sob o ponto de vista geológico já foram realizados a respeito. Porém, pesquisas mais direcionadas a problemas de engenharia vêm sendo desenvolvidos há pouco tempo.

Nesta dissertação são analisadas 34 provas de carga estática realizadas em estacas pré-moldadas de concreto, cravadas em diferentes locais da cidade de Curitiba e Região Metropolitana, sendo a maioria situada na Formação Guabirotuba. As curvas obtidas nos ensaios estão apresentadas no anexo 1, inclusive na forma de gráficos log P x ρ . Primeiramente procurou-se adaptar alguns métodos de previsão de capacidade de carga ao tipo de estaca estudada na região em questão. Para isso aplicaram-se às quatro estacas levadas à ruptura os métodos Aoki – Velloso (1975), Décourt – Quaresma (1978) e Amaral (1982,1999). Os valores resultantes da capacidade de carga (R) de cada método foram comparados aos valores da carga última (Pu) obtidos através da extrapolação pelo método de Van der Veen das curvas carga x recalque das provas de carga. Com isto foram obtidos coeficientes de correção global e/ou parcial para cada método mencionado, de forma a obter um novo valor de R mais próximo de Pu.

Também se estudou a aplicabilidade do método de Van der Veen (1953), o qual tem sido amplamente utilizado para a extrapolação de curvas obtidas em provas de carga que não foram levadas à ruptura. Para verificação da validade deste procedimento, foram utilizadas quatro provas de carga conduzidas até a ruptura. Utilizou-se a expressão matemática de Van der Veen, modificada por Aoki (1976), para não impor que a curva carga x recalque passe pela origem, determinando-se um critério para garantir uma boa extrapolação destas curvas.

O método proposto por Chin (1978) para avaliação da condição estrutural de uma estaca também foi aplicado ao conjunto de estacas, sem a possibilidade de comprovação.

Finalmente fez-se uma análise dos recalques. Calculou-se o recalque para três níveis diferentes de carregamento em cada estaca e comparou-se com os respectivos recalques medidos. Para cada um destes valores de recalque fez-se a previsão da curva carga x recalque comparando-as com as curvas experimentais. Também utilizou-se o método de Van der Veen (1953) para ajustar a curva pelos três valores de recalque calculados para cada estaca.

2 REVISÃO BIBLIOGRÁFICA

2.1 ASPECTOS GEOGRÁFICOS

2.1.1 Localização

A malha urbana de Curitiba e Região Metropolitana tem limites praticamente coincidentes com a distribuição geográfica dos sedimentos da Bacia de Curitiba (latitudes 25°15′S e 25°55′S e longitudes 49° W 49°35′W). Esta bacia abrange uma área de cerca de 3000 km² e possui contornos irregulares, sendo limitada por todos os lados por terrenos pré-cambrianos que constituem seu embasamento. Siedlecki (1998) elaborou o mapa apresentado na figura 2.1 utilizando fontes da COMEC (1995) e Fortin (1989).

2.1.2 Topografia

O planalto curitibano pode ser caracterizado como colinoso, apresentando altitudes variáveis entre 880 e 960 m. Os relevos são descritos como tipicamente de ondulações suaves e amplas planícies de inundação, que se estendem para mais de 800 km². Essas planícies ocorrem em forma de calhas aluviais. (Ab'Saber, 1966).

Figura 2.1 – Associação entre malha urbana da Região Metropolitana de Curitiba e contexto regional (Siedlecki, 1998)

Canali & Muratori (1981), retomando a linha de Bigarella *et al.* (1965), descrevem a morfologia atual como constituída por amplas colinas, articulada para talvegues de altitudes inferiores através de uma sucessão de patamares, cuja declividade é inferior a 6%. As encostas são dissecadas por talvegues menores que separam os remanescentes de sedimentos.

Giusti (1989) apresenta a variação do relevo de acordo com as regiões descritas a seguir:

A porção nordeste encontra-se profundamente entalhada pelos afluentes do Rio Passaúna e suas nascentes, sendo então uma região montanhosa rebaixada do nível geral do primeiro planalto paranaense.

Nesta porção o relevo é mais enérgico, com espigões alongados, vertentes íngremes e vales em V.

Na porção centro-sul o relevo é mais suave quando ocorrem rochas do embasamento cristalino e as planícies aluviais são extremamente amplas e desenvolvem-se ao longo do Rio Iguaçu e de seus afluentes. Estas áreas passam a planícies de soleira em alguns locais.

Nas regiões recobertas pelos sedimentos cenozóicos da Bacia de Curitiba, a topografia é pouco acidentada, modulada em elevações de baixa altura e encostas muito suaves com vales muito abertos e de fundo chato.

2.1.3 Uso e Ocupação do Solo

A área da Região Metropolitana de Curitiba (RMC) faz parte de um território cuja colonização teve início com a mineração do ouro, posteriormente a criação de gado, a cultura do mate e a extração da madeira, com a consolidação das vias de Curitiba e São José dos Pinhais (COMEC, 1997).

As características morfológicas do terreno da Bacia Sedimentar de Curitiba tiveram influência sobre o desenvolvimento urbano da cidade e dos municípios de sua região metropolitana, já que a ocupação do solo se deu de modo a evitar terrenos entalhados do complexo cristalino, de relevo mais íngreme, bem como regiões de várzeas, ainda sujeita aos processos geológicos acarretados pelas inundações (Boszczowski & Borga, 1998).

A distribuição do material pertencente à Formação Guabirotuba e os aluviões formados nas regiões das várzeas dos rios podem ser visualizados na figura 2.2. Segundo Giusti (1989), o grande incremento da população de Curitiba se deu a partir dos anos 70, ocorrendo um descontrolado processo de "perifização" e ocupação do solo com avanço em direção aos municípios vizinhos, configurando uma complexa conurbação da RMC.

Figura 2.2 – Distribuição da Formação Guabirotuba na RMC (DNPM/MINEROPAR, 1989 *apud* Felipe, 1998)

Nos anos 80 verificou-se um reforço na tendência de expansão da malha urbana em direção aos municípios limítrofes, com ampliação e maior adensamento em relação à malha existente anteriormente. A ocorrência da expansão da malha urbana dos municípios restantes da Região, especialmente os limítrofes, caracterizou-se mais como uma continuidade da trama urbana de Curitiba do que um desenvolvimento dos próprio municípios. Segundo Schussel (1997), a RMC concentra respectivamente 25,34% e 30,53% das populações total e urbana do Estado do Paraná. A densidade demográfica da RMC é baixa, quando considerada no total (158 habitantes/km²). Na área urbana tem-se uma densidade de 1794 habitantes/km² na região e 3044 habitantes/km² em Curitiba.

Quanto à evolução da população urbana na região, para a atual década, mantendo-se esse ritmo de crescimento, haverá um acréscimo de 432.849 habitantes até o ano 2.000 e de 747.780 habitantes no período de 2.000 a 2.010, totalizando um acréscimo de 3.066.797 habitantes.

No município de Curitiba, nota-se que a população vem diminuindo seu ritmo de crescimento, enquanto nos demais municípios vem aumentando significativamente. Em 1.970 a população de Curitiba representava 88,48% da RMC, baixando para 69,72% em 91, e de acordo com projeções, chegará a 52,65% em 2010. Curitiba e seus seis municípios limítrofes formam uma grande malha urbana contínua, que concentra 87% da população da RMC.

Este grande crescimento demográfico vem constituindo um importante agente modificador do meio ambiente, interferindo em seu equilíbrio, potencializando e acelerando diversos processos da dinâmica superficial. Estas interferências adquirem especial importância nas áreas de ocorrência da Formação Guabirotuba, devido a sua susceptibilidade natural a processos erosivos e aos movimentos gravitacionais de massa que são alguns de seus problemas mais comuns. A erosão e os movimentos de massa na região urbana estão associados à falta de planejamento adequado às condições sociais e econômicas do desenvolvimento em áreas urbanas (Felipe, 1998).

O desenvolvimento da cidade efetuou-se principalmente sobre as áreas ocupadas pelos Sedimentos Cenozóicos, onde se verifica uma grande concentração de obras de engenharia. Em alguns locais, onde há concentração de grandes edifícios, estão surgindo alguns problemas de recalques excessivos e desaprumos acentuados. Tais problemas podem ter sua origem devido ao uso abusivo do solo, superavaliação de características e/ou conhecimento superficial do comportamento do "Sabão de Caboclo".

2.2 ASPECTOS GEOLÓGICOS

A geologia da Região Metropolitana de Curitiba (RMC) compreende três partes fundamentais. A primeira é representada pelos terrenos précambrianos formados respectivamente pelas rochas do Complexo Cristalino e dos Grupos Açungui e Setuva. A segunda é constituída pelas formações Camarinha e Guaratubinha e a terceira pelas formações cenozóicas (Formação Guabirotuba e seqüências mais recentes). O modelo digital elaborado por Salamuni (1998) ilustra as formações citadas (fig. 2.3).

Figura 2.3 – Modelo digital do terreno visualizando os constituintes litológicos da área estudada (Salamuni, 1998).

Devido ao fato deste trabalho apresentar maior enfoque à Formação Guabirotuba, serão enfatizadas as descrições da Bacia Sedimentar de Curitiba e das Formações Cenozóicas.

2.2.1 Bacia Sedimentar de Curitiba

Os depósitos cenozóicos da Bacia de Curitiba apresentam dificuldades para uma revisão estratigráfica, pela não existência de camadas guias. Tornase necessária a adoção de uma metodologia apropriada a este tipo de problema, a qual permita o estabelecimento de correlações e eventuais datações das camadas (Becker, 1982).

Os métodos geomorfológicos associados aos estratigráficos possibilitam uma melhor visão de conjunto dos fenômenos que ocorreram na bacia de sedimentação.

Azevedo (1981) sugere que pelo menos a porção superior da Formação Guabirotuba seja de idade pleistocênica. Tal idade é atribuída devido a ocorrência de microfósseis pertencentes ao grupo dos *thecamoebianos* encontrados nestas partes superiores e nas porções retrabalhadas dos sedimentos da própria formação.

Salamuni (1998) encontra em seu estudo pelo menos uma ocorrência fossilífera . Trata-se de bolsões de matéria orgânica, de coloração escura, em meio aos argilitos cinza-esverdeados, típicos do Guabirotuba (figura 2.4).

Figura 2.4 – Bolsões de materia orgânico que contém palinomorfor dentro de argilitos da Formação Guabirotuba (Salamuni, 1998).

Segundo Duarte (1986), a Bacia de Curitiba aproxima-se nos seus aspectos gerais e na morfologia superficial à Bacia Sedimentar de São Paulo, não obstante os trabalhos geológicos realizados ressaltarem as diferenças marcantes existentes entre as seqüências litográficas das duas bacias.

De acordo com Bigarella & Salamuni (1962), a geologia da Bacia de Curitiba pode ser dividida em três agrupamentos distintos e perfeitamente diferenciados.

O primeiro, denominado Embasamento Cristalino é constituído por um complexo de rochas metamórficas do pré-cambriano (em geral, gnaisse e gnaisse-granito). Depositado sobre a superfície bastante irregular do citado embasamento, jazem os depósitos sedimentares do Terciário (depósitos cenozóicos), que são os constituintes essenciais da bacia em questão. Finalmente, depositados também sobre os gnaisses, em virtude da remoção parcial dos sedimentos mais antigos (cenozóicos), ocorrem os sedimentos mais recentes (holocênicos), depositados pelos rios e riachos que cortam a Bacia de Curitiba, constituindo assim, as várzeas.

A toda seqüência de Sedimentos Cenozóicos da Bacia de Curitiba foi atribuído o nome de Formação Guabirotuba por Bigarella *et al.* (1961) e Bigarella & Salamuni (1962). Posteriormente, em pesquisas realizadas por Bigarella e colaboradores, revelou-se a existência de inconformidades erosivas no interior desta Formação. Tal fato permitiu reconhecer uma nova seqüência sedimentar. O que era antes considerado como uma porção intemperizada da Formação Guabirotuba, passou a ser definida como Formação Tinguis.

A subdivisão da bacia foi feita por vários autores cada qual com a sua interpretação.

Becker (1982) separa os depósitos da Bacia de Curitiba em três formações: 1) Formação Guabirotuba, depositada em ambientes de leques aluvionares durante a elaboração do pediplano Pd₂, no Plioceno Inferior em épocas de semi aridez; 2) Formação Tinguis, que se depositou num ambiente de semi-aridez, mas em clima mais úmido que o da formação anterior, dissecando o terreno em vales mais amplos e suaves, elaborando o pediplano Pd₁ durante o Plioceno superior e Pleistoceno inferior, 3) Formação Boqueirão, cuja sedimentação ocorreu durante o Pleistoceno superior e representa um ambiente de amplos vales com canais anastomosados, constituídos por depósitos arenáceos.

Giusti (1989) divide os sedimentos da bacia em Formação Guabirotuba, cujos sedimentos foram depositados em leques aluvionares coalescentes, e Formação Tinguis, separada da Formação Guabirotuba por discordância erosiva, depositada num clima de semi-aridez e constituída por sedimentos arenosos, arcosianos e síltico-argilosos e Depósitos Sedimentares Recentes, constituído por depósitos aluvionares.

Felipe *et al.* (1994), em trabalho executado pela MINEROPAR em convênio com a COMEC, dividiram os sedimentos da Bacia de Curitiba em sedimentos aluvionares recentes que se encontram nas várzeas e terraços que se localizam nas periferias dos sedimentos de várzea, e Formação Guabirotuba subdividida em duas subunidades: a primeira, encontrada em níveis topográficos inferiores e apresentando coloração cinza-esverdeada com ocorrência subordinadas de níveis de arcósios; a segunda, encontrada

em níveis topográficos mais elevados e possuindo intercalações freqüentes de arcósio (fig. 2.5).

Figura 2.5 – Aspecto das alternâncias centimétricas de argilas e arcósios em sedimentos argilosos da Formação Guabirotuba (Felipe *et al.,* 1994).

Coimbra *et al.* (1996) definem ainda a Formação Piraquara. Tantas subdivisões da Formação Guabirotuba em novas formações (Tinguis, Boqueirão e Piraquara) geram discussões a respeito da geologia local. Segundo Salamuni (1998), nenhuma destas três formações apresenta um documento cartográfico que delimite sua área de ocorrência. No caso da formação Tinguis, não se conhece a localização das seções pois as mesmas foram massacradas pela urbanização local. Soma-se a isto a ausência de registros documentais consistentes, tais como fotografias, desenhos e descrições mais detalhadas.

De acordo com o código estratigráfico, nenhuma destas unidades poderia receber a hierarquia de formação, com exceção, talvez, da "Formação" Tinguis. As "Formações" Boqueirão e Piraquara são semelhantes, pelo menos na sua porção conglomerática. Como a "Formação" Boqueirão está localizada em possíveis paleodrenagens, este fato poderia representar a situação pretérita episódica dos próprios depósitos de várzea, originados a partir do Holoceno. Sendo assim, ela não poderia estar dissociada, em termos evolutivos, dos aluviões atuais.

A unidade denominada "Formação" Piraquara necessita de melhor caracterização. De acordo com Salamuni (1998), pode-se tratar de mais de uma fácies, de deposição tardia, da Formação Guabirotuba, dominada por canais meandrantes, já ao final do seu ciclo de sedimentação. Ressalta-se que há manchas, em toda a Formação Guabirotuba de depósitos semelhantes àqueles descritos como "Formação" Piraquara, cujas relações de contato não são claras.

Devido ao fato acima apresentado, será feita menção neste trabalho apenas às Formações Guabirotuba e Tinguis, dando ênfase à primeira.

2.2.2 Processo de Formação

Segundo Becker (1982), o processo formativo das Formações Tinguis e Guabirotuba é o mesmo, porém ocorridos em épocas diferentes, razão pela qual a composição dos dois depósitos é distinta.

Na Era Cenozóica, nos períodos Plioceno e Pleistoceno ocorreram períodos de glaciação e degelo ocasionando alterações climáticas na região da atual Bacia. No período de glaciação, o clima era semi-árido enquanto que no período de degelo, o clima tornava-se úmido.

Durante a fase de clima úmido ocorreram os processos de decomposição das rochas do pré-cambriano resultando um manto de intemperismo (Regolito). Este manto não deveria diferir muito do que hoje em dia recobre a área correspondente ao Complexo Cristalino. Este material intemperizado constituiu a fonte inicial dos sedimentos (Duarte, 1986).

A erosão e transporte do material alterado quimicamente deu-se devido às chuvas concentradas e torrenciais que tornaram a cobertura vegetal ineficiente. O escoamento do lençol arrastava os sedimentos em direção aos vales, como verdadeiras torrentes de lama. Com isso, esses sedimentos depositaram-se de maneira aleatória sem que houvesse seleção dos sedimentos de acordo com o tamanho dos grãos.

A alternância ou oscilação climática foi sugerida por Bigarella & Salamuni (1957 e 1962) e comprovada, em parte, pela constatação da existência dos *Thecamoebianos*, que se desenvolvem em clima úmido. Azevedo (1981) supõe que no Pleistoceno houve nova mudança climática com um ambiente propício ao desenvolvimento abundante de animais inferiores de modo que a ocorrência de esporos e pólens associados permitiria a correlação do clima daquela época ao clima atual.

Pode-se dizer que os sedimentos foram originados da decomposição química de rochas de clima úmido e transportados e depositados em clima semi-árido.

2.2.3 Formação Tinguis

A unidade superior do pacote de Sedimentos Cenozóicos, anteriormente considerada como produto do intemperismo sobre o material da Formação Guabirotuba foi redefinida por Becker (1982) e denominada Formação Tinguis. Esta unidade constitui uma seqüência sedimentar depositada em épocas de semi-aridez. Giusti (1989) afirma que esta seqüência, formada por sedimentos arenosos, arcosianos e síltico-argilosos, pode ser correlacionada com a Formação Riacho Morno do Grupo Barreiras e com a Formação Pariquera Açu do Vale do Ribeira.

A redefinição proposta por Becker (1982) baseou-se nas evidências encontradas de que o material desta Formação sofreu transporte. Um exemplo são as linhas de seixos e formações conglomeráticas na linha de contato entre as duas Formações. Este contato é, em geral, abrupto, na forma de uma superfície de erosão irregular. Apesar de não reconhecer o Tinguis como uma formação, Salazar Jr. (1996) identifica a existência de uma unidade
distinta depositada sobre o Guabirotuba e separada por uma linha de seixos a qual denomina apenas de "material transportado" (fig. 2.6).

A coloração cinza-esverdeada caracteriza a unidade inferior (Guabirotuba) quando a mesma está isenta dos processos de intemperização devido à exposição ao tempo. Isto ocorre principalmente em taludes e cortes em rodovias onde se encontra tal formação com cores avermelhadas, como se observa na figura 2.6. Já na Formação Tinguis predominam os tons castanhos e avermelhados.

Os sedimentos da Formação Tinguis originaram-se do retrabalhamento das argilas e areias da Formação Guabirotuba, ocorrido durante nova inversão climática (para clima úmido) e sua posterior deposição ocorreu provavelmente em nova inversão climática, em períodos semi-áridos.

Figura 2.6 – Solo transportado separado por uma linha de seixos da Formação Guabirotuba (Salazar Jr., 1996).

A textura mais grossa e arenosa apresentada pela Formação Tinguis deve-se a este retrabalhamento e a deposição primária dos materiais mais grossos, pois os finos foram arrastados para as baixadas. Sendo mais grosso, e portanto mais permeável, este material permitiu escoamento intenso de água em seu interior, formando lençóis d'água suspensos, represados sobre a camada praticamente impermeável da Formação Guabirotuba, acarretando assim os processos de lixiviação, formação de óxido de ferro férrico e laterização característica dos solos bem drenados. Isto explica a coloração rósea ou avermelhada que diferencia este material daquele da Formação Guabirotuba (Duarte, 1986).

Embora ainda não tenham sido feitos trabalhos de mapeamento dos solos da Formação Tinguis, pode-se afirmar que a área de ocorrência desta formação é bem menos abrangente que a formação Guabirotuba. Além de uma área de recobrimento menor, sua espessura média é de 1 m a 3 m em conseqüência da menor intensidade dos processos erosivos que a originaram.

2.2.4. Formação Guabirotuba

Muratori *et al.* (1982) concluem que a espessura dos sedimentos é variável, sendo maior na sua porção leste e central, tendo por referência a área do município. Os depósitos desta formação atingem espessuras máximas da ordem de 60 m a 80 m na porção central da Bacia de Curitiba. Tratam-se de depósitos que compreendem seqüências litológicas nas quais predominam principalmente as argilas rijas com presença de lentes arcosianas. Bigarella & Salamuni (1962) classificam os sedimentos como argilitos e areias arcosianas. No âmbito da Mecânica dos Solos, esta denominação é modificada para "argilas rijas".

Estas argilas possuem textura extremamente fina, e as areias apresentam grãos de feldspato e quartzo de até 2 mm de diâmetro, o que indica a presença de processos de desagregação mecânica das rochas do complexo Cristalino de onde se originaram. Há evidências, segundo Duarte (1986), de que estes sedimentos sofreram profunda erosão após o preenchimento final da bacia, pois hoje estão separados em áreas geográficas distintas, intercalados com os depósitos Holocênicos (aluviões), que se assentam direto sobre as rochas do Complexo Cristalino.

Dependendo da espessura da camada, os aluviões podem estar assentados sobre os depósitos da Formação Guabirotuba. Sendo assim, pode haver regiões onde o perfil típico é formado pelo embasamento do Complexo Cristalino e, sobrejacente a ele, encontram-se os depósitos dos aluviões ou dos sedimentos da Formação Guabirotuba. Há regiões porém, em que o perfil típico é caracterizado pelo pacote embasamento Cristalino, sedimentos da Formação Guabirotuba e os aluviões.

A Formação Guabirotuba assenta discordantemente sobre o embasamento cristalino. A discordância entre os sedimentos da Formação Guabirotuba sobre o embasamento cristalino é caracterizada por Lopes (1966) como do tipo "*non-conformity*".

Salamuni (1998) elaborou o modelo digital apresentado na figura 2.7 indicando as principais litologias da Bacia Sedimentar de Curitiba.

Em muitos afloramentos encontram-se impregnações de carbonato de cálcio (caliche) anteriormente referidas como margas por Bigarella e Salamuni (1959). Essas formações carbonáticas contém minerais do grupo das terras raras como a lantanita mencionada por Coutinho (1955). As soluções contendo terras raras poderiam, de acordo com Becker (1982), ser provenientes tanto de rochas graníticas situadas a leste e nordeste da bacia, como também de áreas graníticas situadas a norte e nordeste, de corpos intrudidos tanto no Complexo Setuva quanto no Grupo Açungui.

Figura 2.7 – Modelo digital de terreno com a sobreposição dos litotipos sedimentares da Bacia de Curitiba e do seu embasamento (Salamuni, 1998).

Trescases et. al. (1986) descrevem com detalhes as terras raras da Formação Guabirotuba, definindo com detalhes como ocorrem as lantanitas nos sedimentos. Os carbonatos da bacia aparecem tanto como camadas margosas em meios argilitos como através de calcretes que estão em fissuras. Fortin (1989) e Fortin *et al.* (1989) aprofundam as pesquisas a respeito das lantanitas mostrando que as mesmas estão sempre próximas ao perfil genérico de alteração na superfície topográfica.

Os sedimentos arcosianos apresentam uma estratificação incipiente, às vezes entrecruzada. Os afloramentos examinados indicam uma tendência do transporte ter-se efetuado para o sul ou para o sudoeste, porém acredita-se na hipótese do transporte ter-se desenvolvido ou modificado durante a evolução da bacia. A configuração topográfica do embasamento cristalino mostra uma tendência para sudoeste e oeste a partir do centro (Giusti, 1989).

As argilas são os componentes litológicos mais abundantes na Formação Guabirotuba, preferencialmente acumulados em direção ao interior da bacia. Os fácies argilosos típicos apresentam variações de tonalidades do cinza. A natureza mineralógica é mista: esmectita, ilita e caulinita (Berg *et al.*, 1973).

Os sedimentos desta Formação, segundo Polidoro (1997), são altamente erosivos por terem presença predominante de argilomineral do grupo das esmectitas (montmorilonita). Estas argilas apresentam retração e expansão muito grande pela perda ou absorção de água (argila higroscópica). Este fato, aliado à sua granulometria, faz com que estas argilas sejam facilmente transportadas. Portanto, a facilidade de transporte desta argila se dá mais pelo caráter físico-químico do que pela força dinâmica da água concentrada.

Em superfície, os sedimentos de características preferencialmente cauliníticas assumem coloração avermelhada, atribuída à presença de óxidos e hidróxidos de Fe. Os resultados analíticos obtidos por Fortin (1989) evidenciam a evolução da composição química da fração argilosa em direção ao horizonte superficial (avermelhado), traduzida pela diminuição progressiva da relação SiO₂ / Al₂O₃ e dos teores de MgO e CaO. A diminuição do K₂O porém é significativa somente no horizonte avermelhado. O processo de monossialitização se daria, portanto, a partir do horizonte cinza, enquanto que para a fração ilítica, a alteração se iniciaria a níveis mais superficiais.

2.3 ASPECTOS GEOTÉCNICOS

O solo da cidade de Curitiba e Região Metropolitana (RMC) caracteriza-se por ser argila-siltosa ou silte-argiloso com intercalações de lentes arenosas e arcosianas, de consistência elevada, variando de rija a dura. Apresenta-se nas cores cinza, cinza-esverdeada, marrom clara e avermelhada, conforme a localização e a formação a que se relaciona, sendo os tons de cinza mais comumente relacionados à Formação Guabirotuba e os tons avermelhados, à Formação Tinguis.

Este trabalho apresenta maior ênfase aos solos da Formação Guabirotuba, porém sempre que possível serão feitas comparações entre as duas formações. Quanto às características de campo, trata-se de um solo altamente plástico, de elevada expansibilidade tanto pela presença predominante de argilominerais do grupo das esmectitas quanto pelo fato de ser pré-adensado e que quando umedecido torna-se extremamente liso e pegajoso, motivo pelo qual é denominado popularmente de "sabão de caboclo" em sua região de ocorrência. Se exposto ao ar, sofre ressecamento e, na falta de cobertura vegetal, pode ocorrer o empastilhamento de sua superfície. Quando cortado ou desconfinado, apresenta superfície lisa e brilhante, porém não acusa direção predominante, ocorrendo aleatoriamente. Estruturas de origem tectônica, seguindo padrões definidos, também estão presentes (Salamuni, 1998).

2.3.1 Identificação de Campo

Sondagens de simples reconhecimento com medidas de SPT realizadas na região de Araucária confirmaram a presença de uma camada de argila siltosa variegada, com predominância da cor vermelha, sobrejacente à argila siltosa plástica cinza clara (Fig. 2.8). A existência de camadas superficiais de cores variegadas é conseqüência da intemperização da argila cinza clara (Massad *et al.*, 1981).

Pode-se observar, na figura 2.8, que os valores de resistência à penetração nas camadas de argila siltosa vermelha ou variegada são da ordem de 3 a 6, enquanto que as camadas de argila siltosa cinza clara apresentam em geral resistência à penetração elevada, com SPT superior a 10 e aumentando com a profundidade.

Chamecki *et al.* (1998) detectaram também em ensaios de SPT realizados no Sítio Experimental de Geotecnia da UFPR, duas camadas distintas, sendo a mais superficial de coloração marrom e avermelhada e abaixo desta, um pacote típico da Formação Guabirotuba, composto por argilas rijas a duras, de coloração cinza e marrom. Nesta camada encontra-se um estrato de areia fina rica em feldspato. O nível d'água detectado apresenta-se superficial, em profundidades de 2,0 m a 2,5 m.

Também foram realizados ensaios do tipo *Cone Penetration Test,* com medida de pressão neutra (CPTU) e Penetrômetro Dinâmico Leve (DPL). Nos ensaios de CPTU, os valores de resistência de ponta na camada de argila marrom situaram-se em torno de 6 MPa, enquanto a razão de atrito oscilou em torno de 4%, valor este típico para argilas (Fig. 2.9).

Figura 2.8 – Sondagens de simples reconhecimento na região de Araucária – PR (Massad *et al.,* 1981).

Estes ensaios apresentam maior dificuldade de execução, tornando muitas vezes impraticável seu prosseguimento devido à elevada consistência do material. Os resultados obtidos pelo DPL apresentaram boa concordância com os resultados do SPT. Apesar de alcançarem profundidade inferior, definem melhor a variação de resistência do perfil (Fig. 2.10).

Figura 2.9– Dados de ensaios de CPTU em duas áreas de estudo (Chamecki *et al.*, 1998).

Figura 2.10 – Resultados do ensaio DPL em duas áreas de estudo (Chamecki *et al.*, 1998).

O perfil esquemático obtido pelos autores pode ser observado na figura 2.11 abaixo:

Figura 2.11 - Perfil esquemático (Chamecki et al., 1998).

Pode-se visualizar mais claramente através deste perfil (Fig. 2.11) a distribuição das camadas conforme descrito pelas sondagens acima citadas.

Levantamentos sísmicos e elétricos foram realizados ao longo de aproximadamente 2.000 m em obra no município de Piraquara (RMC). Através do método da refração sísmica foram obtidas velocidades da ordem de 1.600 m/s e 2.000 m/s para a Formação Guabirotuba, enquanto que para os solos moles e topos rochosos estes valores correspondem a 200 m/s e 2.000 m/s a 5.600 m/s, respectivamente (Nascimento *et al.*, 1994).

Para o caminhamento elétrico, ao autores utilizaram o arranjo de Wenner, sendo que nas sondagens verticais adotou-se a configuração Schlumberger. Os valores da resistividade aparente na Formação Guabirotuba variaram de 20 a 100 ohms. Os solos moles e a rocha sã compacta abaixo do nível piezométrico apresentaram resistividade de 150 a 400 ohms e 300 ohms, respectivamente.

Os autores poderiam, através dos resultados dos ensaios de sísmica, determinar o módulo de deformabilidade do material (E₅₀), porém limitaram-se apenas a apresentar os resultados. Outra verificação possível é o contraste entre camadas e a verificação do nível d'água, associando os ensaios ao conhecimento geológico proveniente da inspeção visual e de sondagens de simples reconhecimento.

2.3.2 Ensaios de Caracterização Laboratorial

Duarte (1986) realizou ensaios de granulometria utilizando amostras de solo da Formação Guabirotuba e da Formação Tinguis, retiradas do município de Araucária (RMC). Comparando-se as curvas granulométricas, nota-se a textura mais fina do solo da Formação Guabirotuba (Fig. 2.12), como já mencionado.

Figura 2.12 – Distribuição granulométrica (Duarte, 1986)

Os valores em termos percentuais podem ser melhor observados nas tabelas abaixo (Tab. 2.1 e Tab. 2.2).

Tabela 2.1 – Análise granulométrica para o solo da Formação Ting	guis em
termos percentuais (Duarte, 1986).	

Granulometria			
Argila (%) Silte (%) Areia (%)			
62 31 7			

Tabela 2.2 - Análise granulométrica para o solo da Formação Guabirotul	ba
em termos percentuais (Duarte, 1986).	

Granulometria				
Argila (%) Silte (%) Areia (%)				
67 30 3				

Pode-se observar que a fração argila corresponde à maior percentagem (50%) para ambas as formações. Segundo Massad *et al.* (1981), as argilas cinza (Sabão de Caboclo) e as argilas intemperizadas são solos homogêneos, com predominância da fração de finos, que varia na faixa de 70 a 95% sendo a fração argila (% < 5 μ) superior a 50%.

Ensaios de limites de consistência também foram realizados para estas amostras. Através da comparação dos resultados plotados na carta de plasticidade (Fig. 2.13), confirma-se o maior valor do índice de plasticidade para o solo da Formação Guabirotuba.

Figura 2.13 – Posição na carta de plasticidade (Duarte, 1986).

A tabela 2.3 apresenta o intervalo típico de variação dos valores de massa específica, massa específica dos sólidos, limite de liquidez, limite de plasticidade, índice de plasticidade, teor de umidade natural e índice de vazios para os solos das Formações Tinguis e Guabirotuba. Esses valores limites foram obtidos após interpretação dos resultados encontrados nos ensaios de caracterização realizados por Massad *et al.* (1981), Duarte (1986),

Nascimento (1992), Nascimento *et al.* (1994), Chamecki *et al.* (1998) e Siedlecki (1998) em uma tentativa de diferenciar as formações.

FORMAÇÃO	ρ (g/cm³)	$\rho_{\rm s}(g/cm^3)$	W _L (%)	w _p (%)	IP (%)	W _{nat} (%)	Eo
Tinguis	1,7 - 1,8	-	30 - 50	15 – 30	15 - 30	20 - 30	-
Guabirotuba	1,8 - 1,9	2,7 - 2,8	50 - 90	25 - 45	30 – 50	20 - 35	0,8 - 1,10

Tabela 2.3 – Valores de ρ, ρ_s, w_L, w_p, IP, w_{nat} e e_o para os solos da Formação Tinguis e Formação Guabirotuba.

Os parâmetros de compactação obtidos por Massad *et al.* (1981) revelam valores de teor de umidade ótima na faixa de 25% a 30% e as densidades secas máximas variando entre 1,4 a 1,6 g/cm³. Segundo Duarte (1986), os valores do grau de saturação para as amostras da Formação Guabirotuba mostraram-se bastante elevados, variando entre 90% e 100%.

Através de resultados obtidos em ensaios de caracterização, Nascimento (1992) classificou os solos pelos Sistema Unificado e HRB-AASHO. Pelo primeiro, quase todas as amostras ensaiadas podem ser classificadas como CH (argila de alta plasticidade) e algumas poucas como CL (argilas de baixa plasticidade). Já pelo segundo, todas as amostras podem ser classificadas como solos argilosos (A-7-5 e A-7-6).

Recentemente, foram realizados ensaios de pressão de expansão e expansão livre por Pereira (1999). Tais ensaios seguiram os procedimentos da ISRM (1989) porém com algumas modificações necessárias devido às características do material. Os resultados obtidos para as amostras retiradas de uma região ao nordeste do município de Curitiba seguem nas tabelas 2.4 e 2.5:

Tabela 2.4 – Resultados dos ensaios de expansão livre para amostras no estado natural e secas ao ar (Pereira, 1999).

Amostras com	Amostras com	Amostras secas
umidade natural	umidade natural	ao ar em anel
Deformação (%)	em anel	metálico
	metálico	Deformação (%)
	Deformação (%)	
0,70 - 1,40	0,25 - 0,50	30 - 50

Tabela 2.5 - Resultados dos ensaios de pressão de expansão (Pereira, 1999).

Amostras com umidade	Amostras secas ao ar
natural	Pressão de Expansão
Pressão de Expansão (kPa)	(kPa)
15 - 30	1000 - 3700

Segundo a autora, as amostras utilizadas para o ensaio de expansão livre apresentaram uma contração significativa quando secas ao ar, o que refletiu diretamente nos ensaios de expansão livre e pressão de expansão, gerando resultados elevados se comparados com os materiais com umidade natural (tab. 2.6).

Tabela 2.6 – Contração das amostras secas ao ar retiradas para os ensaios de pressão de expansão (Pereira, 1999).

% Contração vertical	% Contração lateral
10 - 20	10 - 15

Apesar de poucos ensaios terem sido realizados, observa-se que as amostras submetidas aos ensaios de pressão de expansão com umidade natural apresentam um expansão baixa em relação às secas ao ar, provavelmente por possuírem um grau de saturação elevado, superior a 80%. Outro fator importante é o efeito da secagem pois este provocou um aumento significativo, tanto da expansão livre como da pressão de expansão. Devido a isto, no caso de obras civis que envolvam a escavação destas materiais, deve-se minimizar ao máximo as variações de umidade para evitar danos às obras, causados pela expansibilidade (Pereira, 1999).

2.3.3 Parâmetros de Compressibilidade, Permeabilidade e Resistência

Apesar da intensa utilização das Formações Tinguis e Guabirotuba como material natural de fundação, contenções, taludes, etc., pouco se sabe ainda sobre seus parâmetros geotécnicos, especialmente as propriedades de compressibilidade, permeabilidade, resistência e outras.

Em relação à compressibilidade do material, Duarte (1986) realizou ensaios de adensamento edométrico utilizando amostras indeformadas e remoldadas, determinando os índices de compressão (C_c) e de expansão (C_e), a pressão de pré-adensamento (σ_{ad}) e, a partir desta, a Razão de Préadensamento (RPA). O gráfico do ensaio em amostra indeformada pode ser visualizados na figura 2.14.

A pressão de pré-adensamento obtida pelo método de Pacheco Silva corresponde a 1000 kPa para a amostra indeformada. Os dados iniciais do ensaio bem como os demais coeficientes de compressibilidade são apresentados na tabela 2.7.

	DADOS INICIAIS		COMPRESSIBILIDA	
			Ε	
	eo	So (%)	Cc	Ce
Amostra indeformada	0,917	98,6	0,313	0,090
Amostra remoldada	2,062	99,5	0,404	0,108

Tabela 2.7 – Dados iniciais do ensaio e coeficientes de compressibilidade do solo da Formação Guabirotuba (Duarte, 1986)

Figura 2.14 – Curvas de adensamento para ensaio sobre solo indeformado (Duarte, 1986).

Da curva recalque x log tempo (Fig. 2.15), o autor obteve também o coeficiente de adensamento c_v e o módulo de deformabilidade confinado efetivo do solo (E_{ed}) e, a partir deste, calculou o coeficiente de permeabilidade k (tab. 2.8).

Figura 2.15 – Curva recalque x log tempo para ensaio sobre solo indeformado (Duarte, 1986).

	CARREGAMENTO	Cv	E _{ed}	К
AMOSTRA	(kPa)	(cm ² /s)	(kN/m²)	(cm / s)
	800	1,6 x 10 ⁻⁴	3,2 x 10 ⁴	5,0 x 10 ⁻¹⁰
Indeformada	1600	5,7 x 10 ⁻⁵	$3,3 \ge 10^4$	1,7 x 10 ⁻¹⁰
	3200	2,9 x 10 ⁻⁵	3,1 x 10 ⁴	9,3 x 10 ⁻¹¹
	6400	2,6 x 10 ⁻⁵	2,9 x 10 ⁴	4,3 x 10 ⁻¹¹
	5	2,0 x 10-4	8,3 x 10 ¹	2,4 x 10-7
	25	2,7 x 10-4	3,8 x 10 ²	6,9 x 10 ⁻⁸
Remoldada	100	2,8 x 10-4	1,3 x 10 ³	2,2 x 10 ⁻⁸
	400	1,9 x 10-4	4,8 x 10 ³	4,0 x 10-9
	800	1,1 x 10-4	9,1 x 10 ³	1,3 x 10-9
	3200	3,9 x 10 ⁻⁵	$3,3 \ge 10^4$	1,1 x 10 ⁻¹⁰

Tabela 2.8 – Valores de c_v, E_{ed} e k estimados a partir das curvas recalque x log tempo de ensaios edométricos (Duarte, 1986).

Siedlecki (1998) realizou ensaios de permeabilidade a carga constante com amostras compactadas retiradas do distrito industrial de Campina Grande do Sul (RMC). Os valores obtidos são da ordem de 10^{-5} e 10^{-6} cm² / s. Pode-se notar que os valor estimados por Duarte (1986) são muito inferiores aos encontrados por Siedlecki (1998). Isto se deve ao fato de que a estimativa dos valores de permeabilidade depende da estimativa de outros fatores como c_v e E_{ed}, tornando-a muito falha.

Quanto aos resultados dos ensaios edométricos, um valor que chama a atenção é a elevada pressão de pré-adensamento (1000 kPa), e mais ainda a sua razão de sobreadensamento da ordem de 17, pois a amostra em questão foi retirada a profundidade de 2 m e sendo seu peso específico natural equivalente a 19 kN / m³, o peso de terra sobre a mesma seria da ordem de 40 kPa.

Valores desta grandeza são confirmados por Massad *et al.* (1981) e Nascimento (1992). O primeiro encontrou para o solo ensaiado um valor de pressão de pré-adensamento equivalente a 700 kPa, enquanto Nascimento (1992) obteve valores da ordem de 500 kPa a 1000 kPa.

Tais valores reforçam o fato de que o elevado sobreadensamento não se deve somente ao alívio de tensões causado pela erosão de camadas superiores de solo, pois para tal seria necessária uma remoção de 50 m de sedimentos. Apesar de não haver estudos geológicos que mencionem o nível original de preenchimento da Bacia Sedimentar de Curitiba, é pouco provável que os sedimentos tenham atingido cotas tão elevadas (Becker,1985; *apud* Duarte, 1986).

Ao ensaiar uma amostra indeformada guardada em laboratório por aproximadamente 3 anos, parcialmente protegida, Nascimento (1992) mediu uma surpreendente expansão, equilibrada somente com pressão de 500 kPa, impossibilitando a seqüência normal do ensaio. Isto vem ao encontro da suposição de que os depósitos sedimentares da Bacia de Curitiba sejam, pelo menos em parte, spbreadensados por ressecamento.

Quanto às características de resistência, Nascimento (1992) realizou uma série de ensaios de cisalhamento direto e de compressão simples utilizando diversas amostras do solo sedimentar da bacia de Curitiba. Os valores obtidos para a coesão média e ângulo de atrito interno são próximos a 50 kPa e 31°, respectivamente, para ensaios rápidos e inundados com velocidades de 0,0802 mm/min e 0,182 mm/min. Um exemplo de envoltória segue na figura 2.16.

Figura 2.16 – Envoltória de resistência para o solo sedimentar da Bacia de Curitiba (Nascimento, 1992).

O autor analisou cuidadosamente o comportamento de cada amostra rompida na prensa de cisalhamento direto e observou um razoável desempenho tridimensional livre, ou seja, o corpo de prova é seccionado horizontalmente e pode comprimir e/ou expandir verticalmente, dependendo da pressão vertical utilizada. Esta situação, se comparada ao ensaio de compressão simples, por exemplo, é sem dúvida mais real. Outro fato constatado é a complementação da envoltória possibilitada pela resistência à compressão simples como na figura 2.17.

Figura 2.17 – Resistência à compressão simples e envoltória de cisalhamento direto para o solo sedimentar da Bacia de Curitiba (Nascimento, 1992).

Os ensaios realizados por Massad *et al.* (1981) foram do tipo compressão triaxial rápidos pré-adensados saturados por contrapressão. Os resultados obtidos são apresentados nas figuras 2.18 e 2.19.

Figura 2.18 – Ensaio triaxial rápido pré-adensado saturado por contrapressão – argila cinza da Formação Guabirotuba (Massad *et al.*, 1981).

Figura 2.19 – Ensaio triaxial rápido pré-adensado saturado por contrapressão – argila vermelha da Formação Tinguis (Massad *et al.,* 1981).

Nota-se que a argila cinza apresenta curva tensão x deformação com pico bem acentuado, com parâmetros de resistência efetivos de 50 kPa e 28°. Os valores residuais correspondentes foram 50 kPa e 11°. Para as argilas vermelhas, a curva não apresenta um pico tão acentuado e o valor dos parâmetros efetivos correspondem a 40 kPa e 23°. O critério de ruptura adotado foi o da máxima relação entre as tensões principais efetivas ($\overline{\sigma_1}/\overline{\sigma_3}$), devido à tendência de diminuição das pressões neutras com o acréscimo de carga axial (comportamento de solos pré-adensados).

Sabe-se que para as argilas sobreadensadas, a diferença entre a resistência de pico e residual é significativa, pois ao efeito da reorientação das partículas lamelares no plano de ruptura (causa da queda de resistência pós-pico em argilas normalmente adensadas) vem somar-se o efeito da dilatância, que aumenta o teor de umidade na região cisalhada provocando uma queda adicional de resistência (Fig. 2.20).

δ_H (mm)

Figura 2.20 – Comparação simplificada entre comportamentos tensão x deformação de argilas normalmente adensadas e sobreadensadas em condições drenadas (Duarte, 1986).

Com o intuito de elucidar a questão da resistência residual, foram realizados ensaios de cisalhamento direto com grandes deformações por Massad *et al.* (1981) e posteriormente por Duarte (1986). O primeiro obteve para as argilas cinzas um valor para o ângulo de atrito efetivo residual da ordem de 10,4°, com coesão efetiva nula. Os correspondentes valores de pico foram 21° e 10 kPa. Os dados relativos a estes ensaios são apresentados na tabela 2.9 e na figura 2.21.

ÍNDICES FÍSICOS INICIAIS				
σ _N (kPa)	W (%)	ρ (g/cm³)	eo	S _r (%)
49	39,2	1,794	1,151	92
98	39,9	1,754	1,156	93
294	39,5	1,744	1,162	92

Tabela 2.9 - Índices físicos iniciais (Massad et al., 1981)

Figura 2.21 – Ensaio de cisalhamento direto com grandes deformações para a argila cinza da Formação Guabirotuba (Massad *et al.,* 1981).

Duarte (1986) realizou diversos ensaios de cisalhamento direto com reversão múltipla para amostras também da região de Araucária e obteve as envoltórias de resistência de pico e residual apresentadas na figura 2.22:

Figura 2.22 – Envoltórias de resistência, em termos de tensões efetivas para o solo da Formação Guabirotuba, obtidas através de ensaios de cisalhamento direto com reversão múltipla (Duarte, 1986)

Pode-se atribuir o baixo valor da resistência residual ao elevado conteúdo de esmectitas (montmorilonitas), cujas partículas lamelares extremamente pequenas e delgadas implicam um reduzido valor do ângulo de atrito intrínseco (ϕ_{μ}), e portanto do ângulo de atrito residual (ϕ_{R}).

2.3.4 Problemas esperados

A prática regional de engenharia geotécnica recomenda cuidados especiais ao se trabalhar neste solo. Estruturas leves, como pavimentos, sugerem a execução de drenagem superficial e profunda, além de isolamento do solo expansivo através de selos de argila, evitando grandes mudanças do teor de umidade, e por conseguinte, expansão (Nascimento *et al.*, 1994).

Em relação à execução de fundação superficial ou profunda neste tipo de solo, um dos pontos mais importantes é a boa organização do serviço na obra, especialmente no sentido de agilizar o lançamento do lastro de concreto magro, no caso de sapatas, e do concreto estrutural em estacas escavadas e tubulões. Tal serviço deve ser realizado imediatamente após inspeção e liberação da fiscalização da obra com o intuito de evitar a perda ou absorção de água que pode ocasionar sérios problemas como fechamento do fuste.

O caso de tubulões com base alargada é normalmente crítico e, se houver presença do nível d'água, torna-se altamente desejável a perfuração mecânica do fuste. Recomenda-se ainda que cada tubulão seja concretado o quanto antes e no mesmo dia da escavação, sob risco de desmoronamento (Nascimento, 1992).

Acidentes também têm ocorrido em obras de escavações e contenções nos solos da Formação Guabirotuba, bem como comportamentos inesperados em contenções, fundações e taludes de diversas inclinações que apresentam problemas de instabilidade, provavelmente relacionados à expansividade e à existência das superfícies lisas e brilhantes que se desenvolvem aleatoriamente na massa de solo.

Salazar Jr. *et al.* (1996) apresentam também diversos problemas relacionados à erodibilidade destes materiais. Como exemplo, a ação atrópica nas obras de construção de estradas, implantação de loteamentos, cortes em lotes para construção de casas, terraplanagem, etc., em que normalmente é retirado o solo superficial estável, de pouca espessura, deixando expostas as argilas da Formação Guabirotuba.

Nestas condições, os sedimentos perdem a umidade natural e em função das características físico-químicas, retraem-se (empastilhamento) e com a água da chuva se re-hidratam e se expandem formando uma lama que é facilmente transportada mesmo com pequenos gradientes, necessitando apenas que haja escoamento de água formada ou erosão laminar ou concentrada. Quanto maior a declividade, mais acelerado será o processo de formação de ravinas que atingem grandes dimensões causando grandes danos em áreas rurais e urbanas (Fig. 2.23).

Figura 2.23 – Movimento de massa gravitacional "rastejo" e suas conseqüências no loteamento Santa Rosa em campina Grande do Sul (RMC) (Felipe, 1998)

Oliveira *et al.* (1997) apresentam situações de riscos de escorregamento oferecidas por alterações introduzidas pelo próprio uso do solo, em função de problemas ligados à variação volumétrica dos sedimentos pela presença de argilo-minerais expansivos. Essas alterações resultam da exposição do sedimentos argilosos a ciclos de umedecimento e ressecamento, em taludes, cortes e mesmo terraplanagens, gerando fenômenos de empastilhamento (Fig. 2.24).

Figura 2.24 – Aspecto do empastilhamento e trincas causados pela retração nas argilas cinza-esverdeadas da Formação Guabirotuba (Felipe *et al.*, 1994)

A existência de fraturamento conchoidal favorece a formação de superfície de ruptura, potencializando a movimentação de fatias do terreno (Fig. 2.25). As áreas que oferecem maior risco têm declividade superior a 20% e são desprovidas do solo de cobertura e vegetação (Hach-Hach, 1998 e Hach-Hach *et al.*, 1998).

Figura 2.25 – Risco de escorregamento em sedimentos da Formação Guabirotuba, desprovidos de solo e cobertura vegetal (Oliveira *et al.*, 1997).

2.4 PREVISÃO DA CAPACIDADE DE CARGA E INTERPRETAÇÃO DA CURVA CARGA - RECALQUE

2.4.1 Capacidade de carga

O estudo da capacidade de carga, em estacas cravadas em solos argilosos, assume especial importância quando se considera a grande ocorrência de tais tipos de solo nas bacias sedimentares em que estão instalados grandes centros urbanos e industriais do sul do país, que é o caso da Região Metropolitana de Curitiba. Entretanto, contrastando com a enorme quantidade de dados e a volumosa bibliografia existente a propósito do assunto, em solos de São Paulo, por exemplo, de quase nada se dispõe a respeito dos solos de Curitiba (Amaral, 1982). A situação atual é diferente de 1982, pois já existe uma bibliografia disponível, mas ainda pode ser considerada insuficiente. Pesquisas do ponto de vista geológico vêm sendo realizadas, mas o comportamento do material do ponto de vista geotécnico ainda precisa ser estudado e compreendido.

A partir de dados fornecidos por sondagens, especialmente os de caracterização do solo e os resultados dos ensaios penetrométricos SPT, Amaral (1982) elaborou um método de cálculo para estimativa da capacidade de carga de estacas pré-moldadas ajustado aos solos argilosos da Formação Guabirotuba. Este método foi aprimorado pelo autor em 1999.

Para elaboração de algumas formulações de origem semi-empírica relativas à capacidade de carga de estacas à compressão, parte-se de um valor da carga de ruptura obtido por algum critério, designa-se a parcela de ponta e por subtração obtém-se a parcela lateral. Isto traz uma imprecisão a este valor que não existiria em processo que separasse os componentes lateral e de ponta através de evidências físicas dessa transição que pudessem ser matematicamente formuladas (Amaral, 1999).

De acordo com Amaral (1982), para a Formação Guabirotuba a carga lateralmente resistida em estacas pré-moldadas corresponde em média a 88% da carga de ruptura. Sendo assim, a precisão do cálculo da resistência lateral é mais importante que aquela de ponta, sendo conveniente inverter a subtração, calculando-se primeiramente a resistência lateral por formulações algébricas advindas de evidências físicas e depois obtendo-se a resistência de ponta por subtração.

Para elaboração do método, o autor procurou determinar a expressão matemática da curva carga – recalque, partindo da proposta de Van der Veen (1953), ligeiramente modificada para se adequar melhor aos últimos pontos da curva. Foram obtidos então, os valores da carga de ruptura R através da equação

Derivando-se essa a equação em relação a r, obtém-se:

$$\frac{\mathrm{dP}}{\mathrm{d\rho}} = -\left[P_{\mathrm{u}}\mathrm{bae}^{\mathrm{b\rho}}\right]....(2)$$

mas de acordo com (1)

$$P - P_u = -P_u a e^{b\rho} \dots (3)$$

então

$$\frac{\mathrm{dP}}{\mathrm{d\rho}} = b(\mathrm{P}_{\mathrm{u}} - \mathrm{P})\dots(4)$$

De acordo com a figura 2.26, dP/dp é a tangente do ângulo ϵ

Figura 2.26 – Curva carga x recalque genérica (Amaral *et al.,* 1999).

então

$$tg\varepsilon = -b(Pu - P)....(4)$$
$$\frac{tg\varepsilon}{Pu} = -b\left(1 - \frac{P}{Pu}\right)....(5)$$

Para

P=0
$$\frac{\mathrm{tg}\varepsilon}{\mathrm{Pu}} = -b \dots (6)$$
P=Pu
$$\frac{\mathrm{tg}\varepsilon}{\mathrm{Pu}} = 0 \dots (7)$$

A figura 2.26 mostra uma curva carga – recalque cujo ponto A corresponde ao ponto em que a resistência por atrito está totalmente mobilizada. Este ponto deve satisfazer a condição $5 \le \rho_A \le 10$ mm. Para cada prova de carga deve haver um valor de tgɛ correspondente ao ponto A.

O fator de adesão α é definido como sendo a resistência lateral unitária dividida pelo N_{SPT} médio ao longo do fuste como mostra a equação (8).

Adotando-se provisoriamente um valor de tg ϵ /Pu (em que 5 $\leq \rho \leq$ 10 mm) para o ponto A, calcula-se o valor de α e N $_{\ell}$ para todas as curvas que pertençam ao universo a ser estudado estatisticamente. Analisados os dados, o autor chegou ao seguinte valor:

$$\frac{\text{tg}\varepsilon}{\text{Pu}} = (0,005)^{-1} \dots (9)$$

A maior parte das amostras estudadas por Amaral (1999) faz parte da Formação Guabirotuba. Apenas quando foram necessárias amostras em solos de granulometria predominantemente inexistentes nessa Formação, como solos arenosos, foram usadas amostras de outras formações geológicas. As amostras foram divididas em três universos:

- a) amostras predominantemente argilosas;
- b) amostras predominantemente siltosas;
- c) amostras predominantemente arenosas.

Adotando-se a equação (9), e analisando-se cada uma das curvas carga x recalque neste ponto, obtiveram-se as seguintes funções:

$$\alpha = 0,032 N_{\ell}^{-0.74} \quad (argilas)....(10)$$

$$\alpha = 0,014 N_{\ell}^{-0.35} \quad (siltes)...(11)$$

$$\alpha = 0,016 N_{\ell}^{-0.35} \quad (areias)...(12)$$

e a parcela de resistência lateral pode ser escrita como:

A parcela de resistência de ponta pode ser escrita como:

e os valores de K estão apresentados na tabela 2.10.

Solo	K
Argila	0,16
Silte	0,31
Areia	0,44

Tabela 2.10 - Valores do coeficiente K

Obs.: Para valores de S $_{\ell}$ e A $_{p}$ em m², obtém-se valores de P em 10⁻¹ kN.

2.4.2 Diagnóstico da Condição da Estaca

Chin (1978) apresenta um método no qual a condição estrutural de uma estaca pode ser diagnosticada simplesmente pela observação dos resultados da curva carga x recalque, sem necessidade da extração da estaca para fazer-se a verificação. Este método é baseado na relação tensão x deformação do material da estaca e do solo no qual ela está inserida.

Geralmente, quando uma carga P é aplicada na cabeça de uma estaca, a compressão elástica do material da estaca é relativamente pequena quando comparada com a deformação do solo. Consequentemente, a relação entre o recalque ρ e a carga P na cabeça da estaca será aproximadamente hiperbólica como mostra a equação (16), idealizada por Chin (1970):
onde m e c são constantes.

Quando plotado ρ/P *versus* ρ , obtém-se uma relação linear. Para uma estaca em que a capacidade de carga é suportada substancialmente pela resistência lateral, ou se o limite da prova de carga corresponde ao valor último do atrito lateral, o gráfico $\rho/p \times \rho$ resulta em uma única linha reta. Se as condições são tais que a capacidade de carga da estaca é suportada pela resistência de ponta, o gráfico também resulta em uma única linha reta (figura 2.27). O inverso do coeficiente angular fornece a carga última extrapolada (Chin, 1970).

A resistência de ponta requer deslocamentos relativamente grandes para ser mobilizada quando comparada com os deslocamentos necessários para mobilizar o atrito lateral na compressão.

Quando o diagrama $\rho/P \times \rho$ resulta em dois trechos de reta (figura 2.28), o inverso do coeficiente angular do primeiro trecho (PQ) fornece a parcela de atrito lateral e o inverso do coeficiente angular do segundo trecho (RS) fornece a carga última extrapolada (Chin, 1970).

Figura 2.27 – Gráfico ρ/p x ρ para uma estaca de ponta (Chin, 1978).

Figura 2.28 – Gráfico ρ/p x ρ para uma estaca que trabalha pela ponta e por atrito lateral (Chin, 1978).

O gráfico $\rho/P \times \rho$ possibilita ainda analisar a condição estrutural de uma estaca como mostra as figuras 2.29 e 2.30. Nestes casos, os pontos não se encaixam em nenhum dos casos acima citados indicando a existência de alguma anomalia proveniente de algum dano estrutural da estaca que não é possível de ser detectado apenas observando-se a curva carga x recalque. Chin (1978) comprova tal fato através da extração das estacas.

Figura 2.29 – Gráfico ρ/p x ρ para uma estaca que sofreu danos estruturais durante a cravação (Chin, 1978).

Figura 2.30 – Gráfico ρ/p x ρ para uma estaca que sofreu sérios danos na ponta (Chin, 1978).

3 MÉTODOS DE PREVISÃO DA CAPACIDADE DE CARGA

Dentre os inúmeros métodos existentes para previsão da capacidade de carga (R) de um elemento isolado de fundação, foram escolhidos para este estudo os métodos semi-empíricos propostos por Aoki – Velloso (1975), Décourt – Quaresma (1978) e Amaral (1982, 1999). Os dois primeiros foram escolhidos por serem amplamente utilizados no Brasil e o último, por ser desenvolvido para estacas cravadas na Formação Guabirotuba.

Esses métodos foram aplicados ao conjunto de 34 provas de carga estática, das quais 30 não atingiram a ruptura, sendo necessário extrapolar as curvas carga x recalque para obtenção dos valores da carga última (Pu). Os valores obtidos pelos métodos semi-empíricos para a capacidade de carga (R), bem como os valores extrapolados da carga última (Pu), estão apresentados no anexo 2. A comparação dos valores da capacidade de carga obtidos pelos métodos Aoki – Velloso, Décourt – Quaresma e Amaral, com os valores da carga última de Van der Veen (1953), está representada nas figuras 3.1a, 3.1b e 3.1c, respectivamente.

Figura 3.1a – Comparação do método Aoki – Velloso com a carga última de Van der Veen.

Figura 3.1b - Comparação do método Décourt - Quaresma com a carga última de Van der Veen.

Figura 3.1c – Comparação do método Amaral com a carga última de Van der Veen.

Observa-se que o método Aoki – Velloso apresenta-se muito conservador, enquanto que o método Amaral apresenta valores mais ousados, às vezes indo contra a segurança. O método Décourt – Quaresma apresenta valores intermediários.

Para quantificar a dispersão dos valores de R em relação a Pu, calculou-se a relação R/Pu para cada elemento de fundação, assim como o valor médio, desvio padrão e coeficiente de variação (tabela 3.1). Desta tabela, observa-se que o valor médio de R/Pu do método Aoki – Velloso é 42% inferior ao valor unitário (esperado), enquanto os métodos Décourt – Quaresma e Amaral aproximam-se mais do valor unitário: -17% e +23%, respectivamente.

	Aoki - Velloso	Décourt - Quaresma	Amaral
Média	0,583	0,834	1,181
Desvio Padrão	0,225	0,245	0,273
Coef. Variação	0,387	0,294	0,231

Tabela 3.1 – Valores da média, desvio padrão e coeficiente de variação da relação R/Pu para cada método.

Em seguida, procurou-se adaptar cada um dos métodos analisados, de forma a tornar o valor da capacidade de carga mais próxima da carga última, através da introdução de fatores de correção.

Para este estudo, foram utilizadas apenas as quatro provas de carga que atingiram a ruptura, cujas características referentes ao diâmetro (D), comprimento (L), carga nominal (\overline{P}) e carga última (Pu) obtida no ensaio, estão apresentadas na tabela 3.2.

		1		• 1		
1 abela 3.2 – Ca	aracteristicas	das	estacas	ensaladas	ate a	ruptura.

Estaca	D (m)	L (m)	\overline{P} (kN)	Pu (kN)
05	0,38	9,6	700	1080
11	0,20	12,0	200	300
21	0,25	11,5	300	450
30	0,28	10,6	400	580

3.1 Método Aoki – Velloso (1975)

Neste método, as parcelas de resistência de ponta (R_p) e de resistência lateral (R_ℓ) que compõem a capacidade de carga (R) são obtidas a partir da resistência de ponta (q_c) e do atrito lateral unitário (f_c) medidos em ensaios de penetração estática CPT,

onde: $A_p \in S_{\ell}$ correspondem a área da seção transversal da ponta e a área lateral do elemento estrutural de fundação respectivamente;

 F_1 e F_2 são coeficientes de transformação que englobam o tipo de estaca e o efeito escala entre a estaca (protótipo) e o cone do CPT (modelo) cujos valores para estacas pré-moldadas de concreto correspondem a 1,75 e 3,5, respectivamente.

Para estacas de pequeno diâmetro, Aoki (1985) avalia que $F_1 = 1,75$ mostrou-se muito conservador e, por isso, propõe a seguinte expressão para estacas pré-moldadas de concreto:

$$F_1 = 1 + \frac{D}{0,80}$$
 (D em metros).....(3)

em que D é o diâmetro ou lado do fuste da estaca, mantendo a relação $F_2 = 2 F_1$. Vale salientar que o coeficiente F_2 pode variar entre uma e duas vezes o valor de F_1 e que, portanto $F_2 = 2 F_1$ é a hipótese mais conservadora (Aoki,1996).

Com esta proposição para F_1 e, consequentemente para F_2 , calculou-se novamente a capacidade de carga (R*) para cada elemento isolado de fundação (anexo 2).

A figura 3.2 mostra a comparação dos valores da capacidade de carga obtidos pelo método adaptado (R*) com os valores da carga última de Van der Veen (Pu), reapresentando-se os valores obtidos pelo método original (R).

Figura 3.2 – Comparação do método Aoki – Velloso original e adaptado com os valores da carga última de Van der Veen.

A relação R*/Pu foi calculada para cada elemento isolado de fundação e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.3, reapresentando-se os valores referentes à relação R/Pu.

relações K/Pu e K [*] /Pu para o metodo Aoki - velloso.				
	R/Pu	R*/Pu		
Média	0,583	0,778		
Desvio Padrão	0,225	0,314		
Coef. Variação	0,387	0,404		

Tabela 3.3 - Valores da média, desvio padrão e coeficiente de variação das relações R/Pu e R*/Pu para o método Aoki – Velloso.

Observa-se que o método adaptado apresenta um valor médio da relação R*/Pu 33% superior ao de R/Pu, mas ainda permanece razoavelmente conservador.

Por isso, optou-se por introduzir um fator de correção, conforme exposto a seguir.

3.1.1 Fator de correção global

Para obter um fator de correção ao método adaptado de Aoki – Velloso, consideraram-se as quatro provas de carga conduzidas até a ruptura (tabela 3.2), cujos valores de capacidade de carga são experimentais.

A aplicação do método Aoki – Velloso adaptado a essas quatro estacas resulta nos valores de resistência de ponta (R_p^*) , resistência lateral (R_ℓ^*) e capacidade de carga (R*) mostrados na tabela 3.4.

Estaca	R [*] _p (kN)	R_{ℓ}^{*} (kN)	R* (kN)
5	477	376	853
11	165	150	315
21	87	208	295
30	131	193	324

Tabela 3.4 - Valores das resistências de ponta, lateral e de ruptura obtidos pelo método Aoki – Velloso adaptado.

Em seguida calculou-se a relação R*/Pu para cada prova de carga e os respectivos valores da média, desvio padrão e coeficiente de variação (tabela 3.5).

Estaca	R* (kN)	Pu (kN)	R*/Pu
05	853	1080	0,790
11	315	300	1,050
21	295	450	0,655
30	324	580	0,559
		Média	0,763
		Desvio Padrão	0,213
		Coef. Variação	0,279

Tabela 3.5 - Valores da média, desvio padrão e coeficiente de variação da relação R*/Pu para as provas que atingiram a ruptura.

Finalmente o fator de correção global foi determinado como o inverso do valor médio da relação R*/Pu, que e corresponde a 1,3. Este fator multiplicador foi aplicado ao valor de R* obtido pelo método Aoki – Velloso adaptado, encontrando-se o correspondente valor corrigido de R', para os 34 elementos isolados de fundação (anexo 2).

A figura 3.3 mostra a comparação dos valores da capacidade de carga (R') obtidos pelo método adaptado e corrigido com o fator global com os valores da carga última de Van der Veen (Pu), reapresentando-se também os valores de capacidade de carga pelo método adaptado (R*).

Figura 3.3 - Comparação do método Aoki – Velloso adaptado (R*) e do método corrigido com o fator global (R') com a carga última de Van der Veen.

Os valores da média, desvio padrão e coeficiente de variação das relações R*/Pu e R'/Pu estão apresentados na tabela 3.6.

	R*/Pu	R'/Pu
Média	0,778	1,012
Desvio Padrão	0,314	0,408
Coef. Variação	0,404	0,404

Tabela 3.6 - Valores da média, desvio padrão e coeficiente de variação das relações R*/Pu e R'/Pu.

Observa-se, portanto, que é vantajosa a introdução do fator de correção global ao valor de capacidade de carga obtido pelo método adaptado.

3.1.2 Fator de correção parcial

Em outra análise, procurou-se obter um fator de correção apenas para a parcela de resistência lateral uma vez que para essa parcela existe o conservadorismo da hipótese $F_2 = 2F_1$.

Para as quatro provas de carga que atingiram a ruptura, foram mantidos os valores de Pu e de R_p^* , encontrando-se um novo valor para a resistência lateral (R''), tal que

$$R_{\ell}^{''} = Pu - R_{p}^{*}$$
.....(4)

Em seguida, calculou-se a relação $R_{\ell}^{"}/R_{\ell}^{*}$ para cada um dos quatro ensaios, bem como a média, desvio padrão e coeficiente de variação (tabela 3.7). O inverso deste valor médio , 1,46 arredondado para 1,5, foi tomado como fator multiplicador para correção da parcela de resistência lateral.

Tabela 3.7 - Valores da média, desvio padrão e coeficiente de variação da relação $R_{\ell}^{"}/R_{\ell}^{*}$ para as provas que atingiram a ruptura.

Prova	$R_{\ell}^{*}(kN)$	$\mathbf{R}_{\ell}^{''}$ (kN)	$\mathbf{R}_{\ell}^{''} / \mathbf{R}_{\ell}^{*}$
05	376	603	0,624
11	150	135	1,111
21	208	363	0,572
30	193	449	0,430
		Média	0,684
		Desvio Padrão	0,296
		Coef. Variação	0,433

Com esta correção, foram obtidos novos valores de capacidade de carga (R'') para as 34 estacas (anexo 2). A figura figura 3.4 mostra a comparação dos valores da capacidade de carga (R'') obtidos pelo método adaptado e corrigido com o fator parcial com os valores da carga última de Van der Veen (Pu), reapresentando-se os valores de capacidade de carga (R*) do método adaptado.

Figura 3.4 - Comparação do método Aoki – Velloso adaptado (R*) e do método Aoki – Velloso adaptado e corrigido com o fator parcial (R'') com a carga última de Van der Veen.

Os valores da média, desvio padrão e coeficiente de variação da relação R''/Pu são apresentados na tabela 3.8, reapresentando-se os valores referentes à relação R*/Pu.

	R*/Pu	R''/Pu
Média	0,778	1,019
Desvio Padrão	0,314	0,406
Coef. Variação	0,404	0,399

Tabela 3.8 - Valores da média, desvio padrão e coeficiente de variação da relação R*/Pu e R''/Pu.

Observa-se que é interessante a aplicação do fator de correção parcial ao valor de capacidade de carga obtido pelo método adaptado. Da comparação das tabelas 3.6 e 3.8, conclui-se que não há diferenças significativas na utilização dos coeficientes de correção global ou parcial.

É importante notar que o fator de correção parcial encontrado equivale a uma relação $F_2 = 1,35 F_1$.

3.2 Método Décourt - Quaresma

Para o cálculo do fator de correção a ser aplicado neste método novamente foram utilizadas as provas de carga rompidas (tabela 3.2). Aplicando-se o método Décourt - Quaresma (1978) na versão de Décourt (1982), encontram-se os valores da resistência de ponta (R_p), resistência lateral (R_ℓ) e capacidade de carga (R) constantes da tabela 3.9.

Estaca	R _p (Kn)	R_{ℓ} (kN)	R (kN)
5	680	406	1086
11	210	70	281
21	45	272	317
30	79	311	390

Tabela 3.9 - Valores das resistências de ponta, lateral e de ruptura obtidos pelo método Décourt – Quaresma.

3.2.1 Fator de correção global

A relação R/Pu foi calculada para cada um dos quatro ensaios e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.10.

Tabela 3.10 - Valores da média, desvio padrão e coeficiente de variação da relação R/Pu para as provas que atingiram a ruptura.

Estaca	R (kN)	Pu (kN)	R/Pu	
05	1086	1080	1,006	
11	281	300	0,937	
21	317	450	0,704	
30	390	580	0,672	
		Média	0,830	
		Desvio Padrão	0,166	
		Coef. Variação	0,200	

O inverso do valor médio corresponde ao fator de correção global aplicado diretamente na capacidade de carga. Este fator de 1,2 foi multiplicado

ao valor da capacidade de carga (R) do método original, obtendo-se os valores corrigidos (R') dos 34 elementos isolados de fundação (anexo 2).

A comparação entre os valores da capacidade de carga corrigidos pelo fator de correção global (R') com os valores da carga última de Van der Veen (Pu) é apresentado na figura 3.5, reapresentando-se os valores da capacidade de carga (R).

Figura 3.5 - Comparação do método Décourt – Quaresma original e do corrigido como fator global com os valores da carga última de Van der Veen.

A relação R/Pu e R'/Pu foi calculada para cada elemento de fundação e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.11, reapresentando-se os valores referentes à relação R/Pu.

	R/Pu	R'/Pu
Média	0,834	1,001
Desvio Padrão	0,245	0,295
Coef. Variação	0,294	0,294

Tabela 3.11 - Valores da média, desvio padrão e coeficiente de variação da relação R/Pu e R'/Pu.

Observa-se a eficiência da utilização do fator de correção global.

3.2.2 Fator de correção parcial

Procurou-se obter um fator de correção apenas para a parcela de resistência de ponta, pois pode-se considerar que a parcela de resistência lateral calculada pelo método original resulta em valores razoáveis.

Recalculou-se então a parcela de resistência de ponta, como sendo a diferença entre a carga última obtida experimentalmente e a resistência lateral dada pelo método original.

Para as quatro provas de carga que atingiram a ruptura, os resultados são apresentados na tabela 3.12.

Estaca	R_ℓ (kN)	Pu (kN)	$R_{p}^{''}(kN)$
05	406	1080	674
11	210	300	90
21	272	450	178
30	311	580	169

Tabela 3.12 - Valores recalculados da resistência de ponta.

Em seguida, calculou-se a relação $R_p^{"}/R_p$ para cada um dos quatro elementos isolados de fundação, bem como a média, desvio padrão e coeficiente de variação (tabela 3.13).

Estaca	$R_{p}(kN)$	$R_{p}^{''}(kN)$	R_p''/R_p
05	680	603	1,009
11	70	135	0,778
21	45	363	0,253
30	79	449	0,294
		Média	0,583
		Desvio Padrão	0,371
		Coef. Variação	0,635

Tabela 3.13 - Valores da média, desvio padrão e coeficiente de variação da relação R_p''/R_p para as provas que atingiram a ruptura.

O inverso deste valor médio foi tomado como fator multiplicador para correção da parcela de resistência de ponta. Multiplicou-se, então, por 1,7 os valores de R_p dos 34 elementos isolados de fundação, obtendo-se os valores R" de capacidade de carga com fator de correção parcial (Anexo 2).

A figura 3.6 mostra a comparação dos valores da capacidade de carga R" corrigidos com o fator de correção parcial com os valores da carga última de Van der Veen (Pu), representando-se os valores originais (R).

Figura 3.6 - Comparação do método Décourt - Quaresma original e do corrigido com fator parcial com carga última de Van der Veen.

A relação R"/Pu foi calculada para cada elemento de fundação e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.14, representando-se os correspondentes valores para a relação R/Pu.

	Teluções tyt û e tê /t û.		
	R/Pu	R"/Pu	
Média	0,834	0,976	
Desvio Padrão	0,245	0,306	
Coef. Variação	0,294	0,314	

Tabela 3.14 - Valores da média, desvio padrão e coeficiente de variação da relações R/Pu e R″/Pu

Observa-se que é eficiente a correção com o fator parcial. Das tabelas 3.11 e 3.14 conclui-se que não há diferenças significativas da utilização do fator global de correção de capacidade de carga ou do fator parcial, aplicado somente na parcela de resistência de ponta.

3.3 Método Amaral

Para o cálculo do fator de correção a ser aplicado neste método foram novamente utilizadas as provas de carga rompidas (tabela 3.2). Aplicando-se o método Amaral (1982, 1999) encontram-se os valores da resistência de ponta (R_p), resistência lateral (R_ℓ) e capacidade de carga (R) constantes na tabela 3.15.

inelouo Ainarai.						
Estaca	R _p (kN)	R_{ℓ} (kN)	R (kN)			
5	903	413	1316			
11	83	341	424			
21	57	451	508			
30	101	469	570			

Tabela 3.15 - Valores da resistência de ponta, lateral e de ruptura do método Amaral

A relação R/Pu foi calculada para cada um dos quatro elementos isolados de fundação e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.16.

Total and the here and here any drawn a reheared					
Prova	R (kN)	Pu (kN)	R/Pu		
05	1316	1080	1,219		
11	424	300	1,413		
21	508	450	1,129		
30	570	580	0,983		
		Média	1,186		
		Desvio Padrão	0,180		
		Coef. Variação	0,152		

Tabela 3.16 - Valores da média, desvio padrão e coeficiente de variação da relação R/Pu para as provas que atingiram a ruptura.

O inverso do valor médio corresponde ao fator de correção global. Este fator de 0,85 foi aplicado aos 34 elementos isolados de fundação, obtendo-se os valores corrigidos de R' de capacidade de carga (Anexo 2).

A figura 3.7 apresenta a comparação entre os valores da capacidade de carga corrigidos com o fator global (R) com os valores da carga última de Van der Veen (Pu), representando-se os valores originais (R).

Figura 3.7 - Comparação do método Amaral original e do corrigido com fator global com os valores da carga última de Van der Veen.

As relações R_1/Pu e R'/Pu foram calculadas para os 34 elemento isolados de fundação e os valores da média, desvio padrão e coeficiente de variação estão apresentados na tabela 3.17.

	R/Pu	R'/Pu	
Média	1,181	1,004	
Desvio Padrão	0,273	0,232	
Coef. Variação	0,231	0,231	

Tabela 3.17 - Valores da média, desvio padrão e coeficiente de variação das relacões R/Pu e R'/Pu.

Observa-se que é válida a utilização do fator de correção global.

3.4 Método "Composto"

Finalmente, optou-se por calcular a capacidade de carga somando-se a parcela de resistência lateral do método Décourt-Quaresma com a resistência de ponta do método Aoki-Velloso. Os valores de R obtidos para os 34 elementos isolados de fundação são apresentados no Anexo 2.

A figura 3.8 apresenta a comparação dos valores da capacidade de carga obtida por esse método "composto" com os valores da carga última de Van der Veen.

Figura 3.8 – Comparação do método composto com os valores da carga última de Van der Veen.

A relação R/Pu foi calculada para os 34 elementos de fundação e os valores da média, desvio padrão e coeficiente de variação são apresentados na tabela 3.18.

R/Pu
0,927
0,310
0,334

Tabela 3.18 - Valores da média, desvio padrão e coeficiente de variação da relação R/Pu.

Comparando-se as tabelas 3.1 e 3.19, observa-se que curiosamente esse método "composto" apresenta valores de capacidade de carga melhores do que os três métodos originais analisados.

4 INTERPRETAÇÃO DA CURVA CARGA - RECALQUE

4.1 Método de Van der Veen (1953)

A expressão proposta por Van der Veen (1953) para representar a curva carga x recalque tem sido amplamente utilizada no Brasil para extrapolação de curvas obtidas em provas de carga que não foram levadas à ruptura. O procedimento de extrapolar a curva para se avaliar a carga de ruptura, quando o ensaio da estaca não indicar uma ruptura nítida, é legitimado pela NBR 6122/96 (item 7.2.2.3). Porém tem-se feito um uso quase indiscriminado desse método sem a preocupação com sua aplicabilidade.

Quando se discute o problema dos ensaios encerrados prematuramente, ainda no trecho praticamente linear da curva carga x recalque, cabem alertas do tipo: o critério de Van der Veen é aplicável somente se o ensaio atingiu pelo menos dois terços da carga de ruptura (Décourt & Niyama, 1994). Entretanto, não há meio de assegurar, para uma prova de carga não rompida, qual a proporção da carga de ruptura teria sido atingida.

Além disso, é preciso considerar que o método de Van der Veen tem duas hipóteses básicas: 1^a) a forma da curva carga x recalque é do tipo exponencial;

2^a) o modo de ruptura é do tipo ruptura física, correspondendo a recalques teoricamente infinitos. Portanto nos casos em que a curva real não for do tipo exponencial adotado por Van der Veen (ou a carga máxima atingida no ensaio não for suficiente para evidenciar a forma da curva) ou ainda quando o modo de ruptura não for o de ruptura física é de se esperar que este método não forneça resultados satisfatórios.

Para a verificação da validade deste procedimento de extrapolação, foram utilizadas as quatro provas de carga conduzidas até a ruptura (tabela 3.2). Essas provas de carga foram realizadas em estágios correspondentes a 20% da carga nominal ($\overline{P_e}$) e atingiram a ruptura no 8º estágio. Os valores experimentais da carga última Pu coincidem com os determinados pelo método de Van der Veen, considerando todos os estágios das provas de carga, o que demostra que os ensaios atingiram a ruptura.

Utilizou-se a expressão matemática de Van der Veen (1953), modificada por Aoki (1976), para não impor que a curva carga x recalque ajustada passe pela origem:

$$P = Pu \left[1 - e^{-(a\rho + b)} \right]....(1)$$

onde

- P é a carga correspondente a um recalque ρ;
- Pu é a carga última (ruptura física);
- a é o coeficiente de forma da curva;
- b é o intercepto no eixo dos recalques.

O método de Van der Veen foi aplicado considerando-se que os ensaios tivessem sido interrompidos, em diferentes estágios, com o objetivo de verificar se os valores obtidos para a carga última através da extrapolação aproximam-se dos valores experimentais.

Este procedimento foi aplicado, para cada ensaio, a partir do quarto estágio, obtendo-se os valores apresentados na tabela 4.1. O ponto correspondente à origem foi considerado nas estacas 11, 21 e 30. Para a estaca 05 não considerou-se tal ponto por não estar "alinhado" com o restante da curva carga x recalque.

Tabela 4.1 – Carga última de Van der Veen (Pu, em kN) com o avanço do ensaio.

Fetaca			Estágio		
LStaca	4º	5°	6°	7°	8°
05	730	950	1060	1260	1080
11	280	230	260	280	300
21	470	480	470	500	450
30	370	480	530	580	580

A análise desses resultados mostra que a carga última de Van der Veen varia com o andamento do ensaio. Esta variação pode ser mais "comportada", no caso das estacas 11, 21 e 30 ou um tanto quanto "aleatória" como no caso da estaca 05. Aliás, para esta estaca, o valor de Pu obtido no penúltimo estágio é 17% superior ao valor experimental (1080 kN).

Para quantificar essa variação da carga última, os valores absolutos da Tabela 4.1 foram transformados em variação percentual em relação ao estágio anterior (Tabela 4.2).

Estaca	Estágio				
Lotaca	5°	6°	7°	8°	
05	+30%	+12%	+19%	-14%	
11	-18%	+13%	+8%	+7%	
21	+2%	-2%	+6%	-10%	
30	+30%	+10%	+9%	0	

Tabela 4.2 – Variação (em %) da carga última de Van der Veen em relação ao estágio anterior.

A partir dos valores da Tabela 4.1, também se pode calcular o erro da carga última de Van der Veen, para cada estágio, em relação ao valor experimental, obtendo-se os valores mostrados na Tabela 4.3.

Tabela 4.3 – Erro (em %) na carga última em cada estágio em relação ao valor experimental.

Estaca	Estágio				
Estaca	4º	5°	6°	7°	
05	-32%	-12%	-2%	+17%	
11	-7%	-23%	-13%	-7%	
21	+4%	+7%	+4%	+11%	
30	-36%	-22%	-9%	0	

Da observação conjunta das tabelas 4.2 e 4.3 deduz-se que, a partir do $5^{\underline{0}}$ estágio, correspondente a carga nominal, a variação máxima de 10% (em

módulo) nos valores da carga última de Van der Veen (tabela 4.2), garante um erro máximo de 11% (em módulo) em relação ao valor experimental (tabela 4.3).

A aplicação desse critério, às quatro provas de carga analisadas resultaria nos seguintes resultados:

- a) A curva da prova de carga da estaca 21 pode ser extrapolada a partir do 5° estágio, com Pu = 480 kN (erro de +7%); a partir do 6° estágio, com Pu = 470 kN (erro de +4%); ou a partir do 7° estágio, com Pu = 500 kN (erro de+11%);
- b) A curva da prova de carga da estaca 30 pode ser extrapolada a partir do 6° estágio, com Pu = 530 kN (erro de -9%) ou a partir do 7° estágio, com Pu = 580 kN (erro nulo);
- c) A curva da prova de carga da estaca 11 pode ser extrapolada a partir do 7º estágio, com Pu = 280 kN (erro de -7%);
- d) A curva da prova de carga da estaca 05 não pode ser extrapolada nem mesmo se interrompida no penúltimo estágio.

Para as demais 30 provas de carga analisadas, calculou-se a variação da carga última de Van der Veen (Δ Pu) entre os dois últimos estágios. Constatou-se que em apenas 15 ensaios (tabela 4.4a), essa variação é de no máximo 10% em módulo, o que garantiria uma boa extrapolação da curva por Van der Veen (erro máximo de 11% na carga última).

Mas em outros 15 ensaios (tabela 4.4b), a variação da carga última de Van der Veen nos dois últimos estágios é superior a 10%, em módulo, o que não garante uma extrapolação razoável da curva

Estaca	Penúltimo estágio		Último estágio		ΔPu
	P – ensaio	Pu - Van der	P – ensaio	Pu - Van der	(%)
	(kN)	Veen (kN)	(kN)	Veen (kN)	
03	420	500	450	516	+3,2%
04	700	822	750	884	+7,5%
06	550	994	600	1093	+10,0%
10	540	821	600	739	-10,0%
13	160	274	200	302	+10,0%
15	420	513	450	501	-2,3%
17	280	570	300	549	-3,7%
20	420	549	450	541	-1,5%
22	280	402	300	393	-2,2%
23	280	341	300	327	-4,1%
25	280	346	300	338	-2,3%
26	280	374	300	367	-1,9%
31	820	1315	900	1210	-8,0%
33	820	1040	900	998	-4,0%
34	840	953	900	991	+4,0%

Tabela 4.4a - Variação da carga última de Van der Veen entre os dois últimos estágios ($|\Delta Pu| \le 10\%$).

Estaca	Penúltin	no estágio	Último	o estágio	ΔPu
	P – ensaio	Pu - Van der	P – ensaio	Pu - Van der	(%)
	(kN)	Veen (kN)	(kN)	Veen (kN)	
01	420	1294	450	629	+51,4%
02	280	455	300	358	-21,3%
07	450	1049	500	757	-27,8%
08	280	895	300	378	-57,8%
09	540	1392	600	865	-37,9%
12	420	636	450	529	-16,8%
14	80	151	123	288	+90,7%
16	560	1289	600	830	-35,6%
18	560	985	600	759	-22,9%
19	420	833	450	563	-32,4%
24	420	644	450	523	-18,8%
27	280	1152	300	358	-68,9%
28	280	402	300	335	-16,6%
29	280	419	300	327	-22,0
32	560	921	600	704	-23,6%

Tabela 4.4b - Variação da carga última de Van der Veen entre os dois últimos estágios ($|\Delta Pu| > 10\%$).

Nas curvas em que este critério não se aplica pode-se deduzir que a prova de carga deveria ter continuado em pelo menos um estágio adicional, ou que essas curvas carga x recalque talvez não sigam o modelo proposto por Van der Veen (1953).

Em princípio, essas conclusões devem ser consideradas apenas para a região estudada e, ainda assim, como preliminares. Seria desejável a análise de

um número maior de provas de carga conduzidas até a ruptura para aprimorar o critério.

4.2 Método de Chin (1978)

Para aplicação do método de Chin (1978) desenhou-se o diagrama $\rho/P \times \rho$ para as 34 provas de carga (anexo 3). Da observação destes diagramas podem-se identificar três subconjuntos.

No primeiro subconjunto os pontos constituem uma única reta, para o qual o inverso do coeficiente angular fornece a carga última extrapolada (Chin, 1970). De acordo com Chin (1978), este caso corresponde a estacas que trabalham substancialmente pela ponta. No segundo subconjunto, o diagrama mostra dois trechos de reta: o inverso do coeficiente do trecho inicial dá a parcela de atrito lateral e o inverso do coeficiente angular do trecho final caracteriza a capacidade de carga (ponta e atrito). No terceiro subconjunto, os pontos indicam uma anomalia proveniente de algum dano estrutural da estaca.

Entretanto essas deduções não tem comprovação para o conjunto de provas de cargas analisadas por ausência de instrumentação e de ensaios de integridade.

Em trabalhos futuros será interessante analisar a eficácia deste método.

5 ESTIMATIVA DE RECALQUE E PREVISÃO DA CURVA CARGA X RECALQUE

Para a estimativa dos recalques, utilizaram-se as 18 provas de carga listadas na tabela 4.4a, as quais satisfazem o critério de extrapolação. A estaca de número 4 não foi utilizada porque não há valores de N_{SPT} abaixo da ponta da estaca.

Primeiramente calculou-se o recalque para três níveis de carga em cada estaca: a carga equivalente à resistência lateral ($P_1 = R_{\ell}$), a carga máxima do ensaio ($P_3 = P_{máx}$) e a carga média (P_2) dada pela média entre P_1 e P_3 . Para as estacas de número 13, 22 e 26 preferiu-se não calcular os recalques porque o valor do atrito lateral (R_{ℓ}) é maior que o valor da carga máxima do ensaio.

Para o valor de P_1 considerou-se a resistência lateral obtida pelo método Aoki – Velloso adaptado e corrigido com o fator de correção parcial (item 3.1.2).

Para as estacas que atingiram a ruptura (11, 21 e 30) utilizou-se em vez da carga máxima do ensaio, a carga equivalente a $P_3 = 1,4 \ \overline{P}_e$. Os valores de P_1 , P_2 e P_3 para as 18 estacas analisadas estão no anexo 4.

5.1 Estimativa do Recalque

O recalque ρ do topo da estaca para os níveis de carregamento mencionados podem ser estimados pela equação (1) proposta por Vésic (19??).

onde

- ρ_e corresponde ao encurtamento elástico do fuste;
- ρ_s corresponde a parcela do recalque, devida à ação das cargas transmitidas ao longo do fuste e pela ponta.

5.1.1 Parâmetros Elásticos do Terreno

O módulo de deformabilidade das camadas abaixo da ponta da estaca foi estimado pela proposição de Janbu (1963),

onde:

- n é o expoente que depende da natureza do solo e que varia de 0,5 a 1,0;
- Δσ é o acréscimo tensões;
- E₀ é o módulo de deformabilidade correspondente ao solo natural, que pode ser obtido, por exemplo pela equação (Aoki, 1985);

$$E_0 = 6 \text{ K N}$$
....(3)

- K é o coeficiente de Aoki Velloso;
- N é o SPT médio da camada.

Adotou-se para n o valor médio de 0,75.

5.1.2 Diagrama de Transferência de Carga

Para obter o diagrama de transferência de carga pode-se considerar que inicialmente são mobilizadas apenas as parcelas de resistência lateral e que somente para níveis de carregamento superiores ao valor do máximo atrito lateral disponível (R_{ℓ}), a carga excedente a este valor é transferida para a ponta da estaca. Essa condição é ilustrada pela figura 5.1, para o caso de três camadas distintas de solo ao longo do fuste, sendo que:

 R_{ℓ_i} representa a parcela de atrito lateral da camada i ($R_{\ell} = \sum R_{\ell_i}$);

P é a carga aplicada no topo da estaca;

 $R_{p,m}$ é a resistência de ponta mobilizada ($R_{p,m}$ = P - R_{ℓ});

Q_i representa o esforço normal na estaca na cota correspondente ao topo da camada i.

Figura 5.1 – Diagrama de transferência de carga.

5.1.3 Encurtamento Elástico do Fuste

Para o cálculo do encurtamento elástico do fuste tem-se a equação

onde

- $\Delta \ell_i$ é a espessura da camada i;
- A_p á a área da ponta da estaca;
- E_c é o módulo de elasticidade da estaca.

Para E_c, adotou-se o valor de 25000 MPa.

5.1.4 Acréscimo de Tensões

O acréscimo médio de tensão vertical ($\Delta \sigma_i$) na camada j abaixo da ponta da estaca, devido à reação às parcelas de resistência lateral R_{ℓ_i} e de ponta $R_{p,m}$ pode ser calculada pela consideração de que ocorra um espraiamento de tensões de 2:1,. conforme mostra a figura 5.2 e a equação (5).

Figura 5.2 - Distribuição de pressões (Aoki, 1985).
$$\Delta \sigma_{j} = \left(\sum_{i=1}^{h} \frac{4 \times R_{\ell_{i}}}{\pi (h_{i} + D)^{2}}\right) + \frac{4R_{p,m}}{\pi (hj + D^{2})}....(5)$$

onde

- D corresponde ao diâmetro da estaca;
- h_i corresponde a distância entre o centro da camada i, ao longo do fuste, e o centro da camada j abaixo da ponta da estaca;
- h_j é a distância entre a ponta da estaca e o centro da camada
 j.

assim, a parcela de recalque ρ_{sj} de cada camada j pode ser calculada pela expressão

Evidentemente são considerados os recalques de todas as camadas situadas abaixo da ponta da estaca, até o indeformável, admitido como sendo a cota correspondente ao impenetrável pelo amostrador na sondagem SPT.

Para os três níveis de carga P_1 , P_2 e P_3 , calcularam-se os correspondentes valores de recalque ρ_1 , ρ_2 e ρ_3 . Para cada estaca analisada esses valores juntamente com o recalque medido no ensaio estão apresentados no anexo 4.

A tabela 5.1 apresenta a relação ρ_c / ρ_m (recalque calculado pelo recalque medido) para as cargas P₁, P₂ e P₃ de cada estaca. Os valores da média, desvio padrão e coeficiente de variação também são apresentados nesta tabela.

Prova	P ₁	P_2	P ₃
03	0,917	1,349	0,764
06	0,521	0,478	0,491
10	0,709	0,748	0,663
11	0,535	0,526	0,402
15	1,176	1,208	0,914
17	1,667	2,544	2,384
20	0,683	0,749	0,735
21	0,803	0,81	0,705
23	1,189	1,167	0,904
25	1,475	1,682	1,239
30	1,556	1,461	0,453
31	0,561	0,597	0,534
33	0,648	0,771	0,596
34	1,638	1,392	0,843
Média	1.006	1.106	0.831
Desvio Padrão	0.434	0.563	0.499
Coef. Variação	0.431	0.509	0.601

Tabela 5.1 – Valores da relação ρ_c/ρ_m para as cargas P₁, P₂ e P₃.

Observa-se que para a carga P_1 têm-se um valor médio mais próximo do valor unitário (+0,6%). O coeficiente de variação também apresenta o menor valor.

5.2 Previsão da Curva Carga x Recalque

Para cada um dor três pares de valores (P_i ; ρ_i) obteve-se uma curva de Van der Veen.

Além disso, ajustou-se uma única curva para os três pontos, para cada estaca analisada. As figuras 5.3 a 5.16 mostram, para cada estaca, a comparação da curva experimental com as quatro curvas obtidas.

Figura 5.3a – Comparação entre a curva prevista da estaca 03 para a carga P₁ e a curva experimental.

Figura 5.3c – Comparação entre a curva prevista da estaca 03 para carga P₃ e a curva experimental.

Figura 5.4a – Comparação entre a curva prevista da estaca 06 para carga P₁ e a curva experimental.

Figura 5.3b – Comparação entre a curva prevista da estaca 03 para a carga P₂ e a curva experimental.

Figura 5.3d – Comparação entre a curva ajustada pelos três pontos da estaca 03 e a curva experimental.

Figura 5.4b – – Comparação entre a curva prevista da estaca 06 para carga P₂ e a curva experimental.

Figura 5.4c – Comparação entre a curva prevista da estaca 06 para carga P₃ e a carga experimental.

Figura 5.5a – Comparação entre a curva prevista da estaca 10 para a carga P_1 e a curva experimental.

Figura 5.5c – Comparação entre a curva prevista da estaca 10 para a carga P₃ e a curva experimental.

Figura 5.4d – Comparação entre a curva ajustada pelos três pontos da estaca 06 e a curva experimental.

Figura 5.5b – Comparação entre a curva prevista da estaca 10 para a carga P₂ e a curva experimental.

Figura 5.5d – Comparação entre a curva ajustada pelos três pontos da estaca 10 e a curva experimental.

Figura 5.6a – Comparação entre a curva prevista da estaca 11 para a carga P₁ e a curva experimental.

Figura 5.6c – Comparação entre a curva prevista da estaca 11 para a carga P₃ e a curva experimental.

Figura 5.7a – Comparação entre a curva prevista da estaca 15 para a carga P_1 e a curva experimental.

Figura 5.6b – Comparação entre a curva prevista da estaca 11 para a carga P₂ e a curva experimental.

Figura 5.6d – Comparação entre a curva ajustada pelos três pontos da estaca 11 e a curva experimental.

Figura 5.7b – Comparação entre a curva prevista da estaca 15 para a carga P₂ e a curva experimental.

Figura 5.7c – Comparação entre a curva prevista da estaca 15 para a carga P₃ e a curva experimental.

Figura 5.8a – Comparação entre a curva prevista da estaca 17 para a carga P₁ e a curva experimental.

Figura 5.8c – Comparação entre a curva prevista da estaca 17 para a carga P₃ e a curva experimental.

Figura 5.7d – Comparação entre a curva ajustada pelos três pontos da estaca 15 e a curva experimental.

Figura 5.8b – Comparação entre a curva prevista da estaca 17 para a carga P₂ e a curva experimental.

Figura 5.8d – Comparação entre a curva ajustada pelos três pontos da estaca 17 e a curva experimental.

Figura 5.9a – Comparação entre a curva prevista da estaca 20 para a carga P₁ e a curva experimental.

Figura 5.9c – Comparação entre a curva prevista da estaca 20 para a carga P₃ e a curva experimental.

Figura 5.10a – Comparação entre a curva prevista da estaca 21 para a carga P₁ e a curva experimental.

Figura 5.9b – Comparação entre a curva prevista da estaca 20 para a carga P₂ e a curva experimental.

Figura 5.9d – Comparação entre a curva ajustada pelos três pontos da estaca 20 e a curva experimental.

Figura 5.10b – Comparação entre a curva prevista da estaca 21 para a carga P₂ e a curva experimental.

Figura 5.10c – Comparação entre a curva prevista da estaca 21 para a carga P₃ e a curva experimental.

Figura 5.11a – Comparação entre a curva prevista da estaca 23 para a carga P₁ e a curva experimental.

Figura 5.11c – Comparação entre a curva prevista da estaca 23 para a carga P₃ e a curva experimental.

Figura 5.10d – Comparação entre a curva ajustada pelos três pontos da estaca 21 e a curva experimental.

Figura 5.11b – Comparação entre a curva prevista da estaca 23 para a carga P_2 e a curva experimental.

Figura 5.11d – Comparação entre a curva ajustada pelos três pontos da estaca 23 e a curva experimental.

Figura 5.12a – Comparação entre a curva prevista da estaca 25 para a carga P₁ e a curva experimental.

Figura 5.12c – Comparação entre a curva prevista da estaca 25 para a carga P₃ e a curva experimental.

Figura 5.13a – Comparação entre a curva prevista da estaca 30 para a carga P₃ e a curva experimental.

Figura 5.12b – Comparação entre a curva prevista da estaca 25 para a carga P_2 e a curva experimental.

Figura 5.12d – Comparação entre a curva ajustada pelos três pontos da estaca 25 e a curva experimental.

Figura 5.13b – Comparação entre a curva prevista da estaca 30 para a carga P_3 e a curva experimental.

Figura 5.13c – Comparação entre a curva prevista da estaca 30 para a carga P₃ e a curva experimental.

Figura 5.14a – Comparação entre a curva prevista da estaca 31 para a carga P₁ e a curva experimental.

Figura 5.14c – Comparação entre a curva prevista da estaca 31 para a carga P₃ e a curva experimental.

Figura 5.13d – Comparação entre a curva ajustada pelos três pontos da estaca 30 e a curva experimental.

Figura 5.14b – Comparação entre a curva prevista da estaca 31 para a carga P₂ e a curva experimental.

Figura 5.14d – Comparação entre a curva ajustada pelos três pontos da estaca 31 e a curva experimental.

Figura 5.15a – Comparação entre a curva prevista da estaca 33 para a carga P₁ e a curva experimental.

Figura 5.15c – Comparação entre a curva prevista da estaca 33 para a carga P₃ e a curva experimental.

Figura 5.16a – Comparação entre a curva prevista da estaca 34 para a carga P₁ e a curva experimental.

Figura 5.15b – Comparação entre a curva prevista da estaca 33 para a carga P₂ e a curva experimental.

Figura 5.15d – Comparação entre a curva ajustada pelos três pontos da estaca 33 e a curva experimental.

Figura 5.16b – Comparação entre a curva prevista da estaca 34 para a carga P_2 e a curva experimental.

Figura 5.16c – Comparação entre a curva prevista da estaca 34 para a carga P₃ e a curva experimental.

Figura 5.16d – Comparação entre a curva ajustada pelos três pontos da estaca 34 e a curva experimental.

Observa-se que, em alguns casos, apesar da relação ρ_c / ρ_m não estar muito próxima do valor unitário, a curva carga x recalque prevista apresenta uma boa coincidência com a curva experimental, como por exemplo, as estacas 21, 23, 30 (para os três valores de P_i).

Em outros casos, a curva apresenta uma boa concordância em todo o trecho inicial, havendo entretanto uma diferença significativa dos resultados no trecho próximo à carga máxima do ensaio. Isto é notado nas estacas de número 3 (para P₁ e P₂), 11 (para os três valores de P_i), 15 (para P₁ e P₂), 17 (para os três valores de P_i), 25 (para os três valores de P_i), 30 (para P₁ e P₂),.33 (para P₁), 34 (para P₁ e P₂).

Nos casos em que a distância da ponta da estaca até a profundidade limite inferior da sondagem (tabela 5.3) é pequena (inferior a 6 m), não houve boa concordância, entre a curva prevista e experimental, como as estacas 6 e 31.

Estaca	h (m)
03	6,37
06	1,00
10	8,55
11	6,45
15	9,45
17	11,45
20	6,00
21	11,00
23	1,00
25	8,25
30	11,45
31	3,45
33	6,45
34	9,45

Tabela 5.2 – Distância entre a ponta da estaca e o limite inferior da sondagem (h).

Nos casos das estacas 10 e 20, que apresentam h maior que 6 m, podese justificar os resultados obtidos provavelmente pelo baixo valor do N_{SPT} na ponta da estaca (8 e 3 golpes).

Para os demais casos, notou-se que para determinadas estacas, os resultados nem sempre são satisfatórios para todos os níveis de carregamento analisados. Utilizando-se P = R_{ℓ} obteve-se a maioria das melhores concordâncias entre curvas. Isto também pode ser visto quando se analisa a tabela 5.1, que além de apresentar o valor médio mais próximo do valor unitário, apresentou o menor desvio padrão.

Já as curvas ajustadas por três pontos, pode-se dizer que no caso das estacas 03, 11, 15, 21, 23, 30 e 34 houve boa concordância com a curva experimental apesar de que para as estacas 03, 15, 21, 23, 30 e 34, o valor da carga última de Van der Veen tornou-se divergente.

As curvas das estacas 06, 10, 17,20, 25, 31 e 33 não apresentaram boa concordância com as curvas experimental, porém para as estacas de número 06, 10, 31 e 33 a carga última apresentou valores convergentes (diferença menor que 10 %).

6 CONCLUSÕES

Na bibliografia consultada foi possível observar a crescente necessidade de se conhecer melhor a formação em questão. Estudos geológicos a respeito do assunto vêm sendo desenvolvidos. Do ponto de vista geotécnico porém, há a necessidade de melhor compreensão do comportamento do material a fim de que haja uma melhoria da qualidade das obras de engenharia.

Tendo em vista tal fato, analisou-se neste trabalho, um conjunto de 34 provas de carga estática realizadas em estacas pré-moldadas de concreto cravadas na cidade de Curitiba e Região Metropolitana sendo a maioria situada na Formação Guabirotuba.

Primeiramente estudaram-se três métodos de previsão de capacidade de carga: Aoki – Velloso (1975), Décourt – Quaresma (1978) e Amaral (1982,1999). Estes métodos foram aplicados ao conjunto de estacas comparando os valores calculados da capacidade de carga (R) com os valores da carga última de Van der Veen (Pu). Observou-se que o método Aoki – Velloso é bastante conservador (valores de R cerca de 40% inferiores a Pu) enquanto que o método de Amaral apresenta valores bastante ousados (R 20% superior a Pu). Já o método Décourt – Quaresma (R 20% inferior a Pu) apresenta valores intermediários. Para cada um dos métodos citados buscou-se um fator de correção de modo a tornar a relação R/Pu a mais próxima do valor unitário. No caso do método Aoki – Velloso, analisou-se primeiramente a adaptação do método de acordo com Aoki (1985). Constatou-se que os resultados de R apresentaram uma melhoria pois a relação R/Pu é apenas 24% inferior ao valor unitário. Os fatores de correção então foram calculados para esta versão do método. Aplicando-se o fator global na capacidade de carga (R), os valores resultantes são 1,2 % superiores ao valor unitário. Já para o fator de correção parcial, multiplicado pela parcela de atrito lateral (R_{ℓ}), os valores da capacidade de carga R resultaram em 1,9% acima do valor unitário.

Para o método Décourt – Quaresma (1978) o valor do coeficiente de correção global, aplicado na capacidade de carga, resulta valores da R/Pu praticamente igual ao valor unitário (+1%) enquanto que para o coeficiente de correção parcial, aplicado na parcela de resistência de ponta (R_p), a relação R/Pu resultou 0,9% superior ao valor unitário.

No caso do método Amaral, trabalhou-se apenas com o coeficiente global aplicado na capacidade de carga (R) que resulta numa relação R/Pu 0,4% acima do valor unitário.

Uma outra análise foi feita somando-se as parcelas de resistência de ponta (R_p) do método Aoki – Velloso (1975, adaptado por Aoki em 1985) e resistência lateral (R_ℓ) do método Décourt – Quaresma (1978). Os valores resultantes de R mostraram-se bastante satisfatórios, sendo a relação R/Pu (cerca de 7% inferior ao valor unitário).

Todos os métodos, após a utilização dos fatores de correção, apresentaram uma melhoria significativa dos resultados. Os coeficientes de variação também apresentam uma diferença pequena. Os métodos Décourt – Quaresma e Amaral apresentam os menores valores (0,294 e 0,231 respectivamente) enquanto que para o método Aoki – Velloso este valor corresponde a 0,404. O método de Van der Veen (1953) foi aplicado a quatro provas de carga conduzidas à ruptura, para dedução de um critério que garantisse uma boa extrapolação das curvas carga x recalque.

A partir do quarto estágio, aplicou-se o método de Van der Veen para cada estágio, considerando somente os pontos obtidos até esse estágio. Determinou-se assim a variação da carga última de Van der Veen com o prosseguimento do ensaio.

Deduziu-se o seguinte critério para garantir uma boa extrapolação da curva: uma variação máxima de 10% (em módulo) nos valores da carga última de Van der Veen obtidos em dois estágios consecutivos garante um erro máximo de 11% (em módulo) em relação ao valor experimental da carga última.

A aplicação deste critério a três provas de carga levadas até a ruptura conduziu a erros aceitáveis de –9% a +7% em relação a carga última obtida experimentalmente. Por outro lado, este critério não se aplicou a uma das provas de carga rompidas, o que demonstra a existência de casos em que a extrapolação por Van der Veen conduz a discrepâncias. Neste caso específico, a interrupção da prova de carga no penúltimo estágio teria resultado uma carga última extrapolada de 17% acima do valor experimental (contra a segurança).

Também se aplicou o critério proposto a 30 provas de carga sem ruptura: em apenas 15 delas pode-se garantir uma boa extrapolação da curva carga x recalque. Nas curvas em que o critério não se aplica pode-se deduzir que a prova de carga deveria ter continuado em pelo menos um estágio adicional, ou que essas curvas carga x recalque talvez não sigam o modelo proposto por Van der Veen (1953).

Em princípio, essas conclusões devem ser consideradas apenas para a região estudada e, ainda assim como preliminares. Seria desejável a análise de um número maior de provas de carga conduzidas até a ruptura para aprimorar o critério. Finalmente para estimativa dos recalques, utilizaram-se as 18 provas de carga nas quais o critério apresentado anteriormente se aplica. O recalque foi calculado para três níveis de carregamento diferentes. Estes valores correspondem a parcela de atrito lateral, à carga máxima do ensaio e ao valor médio dos dois anteriores. O valor utilizado para o atrito lateral foi o calculado pelo método Aoki – Velloso adaptado e corrigido com o fator de correção parcial.

Os recalques calculados (ρ_c) foram comparados aos recalques medidos (ρ_m) e a relação ρ_c/ρ_m foi obtida para cada um dos níveis de carregamento. Os melhores resultados foram encontrados para a carga correspondente à parcela de atrito lateral, cuja relação apresentou-se 0,6% acima do valor unitário e com o menor coeficiente de variação.

Fez-se também a previsão da curva carga x recalque comparando-a com a curva experimental. Em alguns casos, apesar da relação ρ_c/ρ_m apresentar um valor distante do unitário, houve boa concordância com a curva experimental. Em outros casos, a curva apresenta uma boa concordância no seu trecho inicial da curva, havendo uma diferença significativa apenas nos pontos próximos a carga máxima do ensaio.

Para que este método de cálculo apresente bons resultados, é necessário que a sondagem seja executada até o indeformável ou pelo menos a uma distância próxima. Nos casos estudados, quando a distância da ponta da estaca até o limite inferior da sondagem apresenta valores abaixo de 6m, não houve boa concordância entre a curvas real e a prevista, salvo algumas exceções. Notou-se ainda que os resultados nem sempre são satisfatórios para todos os níveis de carregamento analisados, sendo que também em relação as curvas, melhores concordâncias São obtidas para a carga correspondente ao atrito lateral.

Já para as curvas ajustadas pelos três pontos, pode-se dizer que em metade das estacas nas quais se aplicou o método obtiveram-se bons resultados quanto a concordância, porém a carga última extrapolada resultou muito acima da carga extrapolada, considerando todos os pontos da curva. Os casos que não apresentaram bons resultados em termos de concordância, apresentaram, para algumas estacas, valores da carga última muito próximos (diferença menor que 10%) dos valores extrapolados, utilizando-se todos os pontos da curva.

7 REFERÊNCIAS BIBLIOGRÁFICAS

- ABNT (1996) "Projeto e Execução de Fundações". NBR 6122/96. Rio de janeiro, 33p.
- AB'SABER, A. N. (1966). "Notas a respeito do sítio urbano de Curitiba". Goemorfologia – USP, v. 3, p. 1 – 7. São Paulo.
- AMARAL, A. B. T. (1982). "Capacidade de carga de estacas em solos argilosos da Formação Guabirotuba". In: CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, 7, Anais, ABMS, v.2, p. 9 - 18, Olinda.
- AMARAL, A. B. T. (1999). "Capacidade de carga a compressão em estacas pré-moldadas levando em conta os recalques". In: CARACTERÍSTICAS DA FORMAÇÃO GUABIROTUBA, 1, Anais, ABMS, setembreo 1999, p.129 – 138, Curitiba.
- AOKI, N. (1976). "Considerações sobre a capacidade de carga de estacas isoladas". Curso de extensão universitária em engenharia de fundações, Universidade Gama Filho, Rio de Janeiro, 44 p.
- AOKI, N. (1985a). "Prática de fundações em estacas pré-moldadas em terra". Palestra proferida no Curso *Pile Foundations for Offshore Structures*", COPPE – UFRJ, Rio de Janeiro, 45 p.
- 7. AOKI, N. (1985b). "Previsão da curva carga x recalque". Notas de cálculo.

- 8. AOKI, N. (1996). "Engenharia de Fundações". Notas de Aula, Curso de Pós-graduação, Departamento de Geotecnia da USP/SC, São Carlos, SP.
- AOKI, N. & VELLOSO, D. A. (1975). "An approximate method to estimate the bearing capacity of piles". In: V PANAMERICAN CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, Buenos Aires, v.1, p. 367 – 376.
- AZEVEDO, F. F. (1981). "Thecamoebianas e organófitas na Formação Guabirotuba". In: SIMPÓSIO REGIONAL DE GEOLOGIA, 3, Atas, SBG, v. 2, p. 226 – 242, Curitiba.
- 11. BECKER, R. D. (1982). "Distribuição dos sedimentos cenozóicos na Região Metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional". Tese (Doutorado). Universidade Federal do Rio Grande do Sul.
- 12. BERG, E. A. T.; LOURENÇO, O. B. (1973). "Sobre a composição mineralógica das argilas dos solos do Estado do Paraná". Boletim Paranaense de Geociências, n.º 31, p. 16.
- BIGARELLA, J. J.; SALAMUNI, R. (1957). "Aspectos geográficos e geológicos da cidade de Curitiba e arredores". 4p, Curitiba. (Reimpresso do v. Comemorativo do Primeiro Centenário da Farmácia Stellfeld).
- 14. BIGARELLA, J. J.; SALAMUNI, R. (1959). "Notas complementares à planta geológica da Cidade de Curitiba e arredores". Boletim do Instituto de Biologia e Pesquisas Tecnológicas, n.º 40, p. 1 – 14, Curitiba.
- 15. BIGARELLA, J. J.; SALAMUNI, R. (1962). "Caracteres texturais dos sedimentos da Bacia de Curitiba". Boletim da Universidade Federal do Paraná. Instituto de Geologia, n.º 7, p.1 –164, Curitiba.
- 16. BIGARELLA, J. J.; SALAMUNI, R.; AB'SABER, A. N. (1961). "Origem e ambiente de deposição da Bacia de Curitiba". Boletim Paranaense de Geografia, UFPR, n.º 4/5, p. 71 – 81, Curitiba.

- BIGARELLA, J. J ; MOUSINHO, M. R. ; SILVA, J. X.(1965). "Pediplanos, sedimentos e seus depósitos correlativos no Brasil". Boletim Paranaense de geografia, UFPR, nº 16/17, p. 117 – 151, Curitiba.
- 18. BOSZCZOWSKI, R. B.; BORGA, P. C. (1998). "Desenvolvimento de metodologia para o levantamento de fundações executada na região de Curitiba". In: EVENTO DE INICIAÇÃO CIENTÍFICA DA UNIVERSIDADE FEDERAL DO PARANÁ (EVINCI), 6, outubro, p.164, Curitiba.
- CANALI, N. E.; MURATORI, A. M. (1981). "Síntese da evolução geomorfológica da Bacia Sedimentar de Curitiba". In: SIMPÓSIO REGIONAL DE GEOLOGIA, 3, Atas, SBG, v. 2, p. 363 – 371, Curitiba.
- 20. CHAMECKI, P. R.; KORMANN, A. M.; NASCIMENTO, N. A.; DYMINSKI, A. S. (1998). "Sítio Experimental de Geotecnia da UFPR – Objetivos e dados preliminares". In: CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, 11, Anais, ABMS, v.2, novembro, p. 819 – 826, Brasília.
- 21. CHIN, K. F. (1970). "Estimation of the ultimate load of piles from tests not carriad to failure". In: SOUTH – EAST ASIAN CONFERENCE ON SOIL ENGINEERING HELD, 2, proceedings, p. 81 – 90, Singapore.
- 22. CHIN, K. F. (1978). "Diagnosis of pile condition". Geotechnical Engineering, vol 9, p. 85 104.
- 23. COIMBRA, A. M.; RICCOMINI, C.; SANT'ANNA, L. G.; VALARELLI, J. V. (1996). "Bacia de Curitiba estratigrafia e correlações regionais". In: CONGRESSO BRASILEIRO DE GEOLOGIA, 39, Anais, SBG, v.1, p. 135 137, Salvador.
- 24. COUTINHO, J. M. V. (1955). "Lantanita de Curitiba, PR". Boletim de Faculdade de Ciências e Letras da Universidade de São Paulo, n.º 186, p. 119 – 126, São Paulo.

- 25. DÉCOURT, L. (1982). "Prediction of the bearing capacity of piles based exclusively on values of the SPT. In: 2ND EUROP. SYMP. ON PENETRATION TEST, Amsterdam, v.1, p. 29 – 34.
- 26. DÉCOURT, L. & QUARESMA, A. R. (1978). "Capacidade de carga de estacas a partir de valores de SPT". In: VI CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, Rio de Janeiro, v.1, p. 45 – 54.
- 27. DÉCOURT, L. & NIYAMA, S. (1994). "Predicted and Measured Behavior of Displacement Piles in Residual Soils". XIII ICSMFE, New Delhi, vol II, p. 477 – 486.
- 28. DUARTE, J. M. G. (1986). "Um estudo sobre o solo da Formação Guabirotuba, com ênfase na determinação da resistência residual". Dissertação (Mestrado). Escola Politécnica da Universidade de São Paulo.
- 29. FELIPE, R. S. (1998). "A gestão de riscos geológicos urbanos erosão e movimento gravitacional de massa na Formação Guabirotuba". Monografia (Especialização em Gestão Técnica do Meio Urbano). Pontifícia Universidade Católica do Paraná e Université de Technologie de Compiègne – UTC – France.
- 30. FELIPE, R. S.; SALAZAR JR., O.; SIEDLECKI, K. N. (1994). "Mapeamento geológico – geotécnico na região do Alto Iguaçú". Programa de geologia aplicada ao planejamento da Região Metropolitana de Curitiba. Convênio 04/93 – MINEROPAR / COMEC. 2v., outubro, Curitiba.
- 31. FORTIN, P. (1989). "Mobilisation, fractionnement et accumulation de terres rares lors de l'altération latéritique de sediments argilo – sableux du Bassin de Curitiba (Brésil)". Tese (Doutorado). École de Mines de Paris.
- FORTIN, P.; TRESCASES, J. J.; MELF, A. J.; SCHITT, J. M.; THIRY,M. (1989). Rare earth elements (REE) accumulations in the Curitiba Basin (Brasil)". In: INTERNATIONAL GEOCHEMICAL EXPLORATION

SYMPOSIUM, 13, Abstracts, Sociedade Brasileira de Geoquímica, p. 66 – 68, Rio de janeiro.

- GIUSTI, D. A. (1989). "Contribuição à geologia ambiental no Município de Curitiba – PR". Dissertação (Mestrado). Universidade de São Paulo.
- 34. HACH-HACH, A. (1998). "Inventário das feições erosivas e dos movimentos de massa gravitacionais na região leste da Grande Curitiba – Paraná, escala 1:20000. Dissertação (Mestrado). 2 v. Escola de Engenharia de São Carlos. Universidade de São Paulo.
- 35. HACH-HACH, A. & ZUQUETE, L. V.(1998). "Inventário dos movimentos de massa gravitacionais na região leste da Grande Curitiba Pr Brasil".
 In: CONGRESSO BRASILEIRO DE MACÂNICA DOS SOLOS E ENGENHARIA GEOTÉCNICA, 10, Anais, AMBS, v. 1, p. 505 513, Brasília.
- 36. LOPES, J. A. U. (1966). "Nota explicativa da folha geológica de Curitiba". Boletim da Universidade Federal do Paraná. Instituto de Geologia. n.º 20, Curitiba.
- 37. MASSAD, F.; ROCHA, J. R.; YASSUDA, A. J. (1981). "Algumas características geotécnicas de solos da Formação Guabirotuba, Paraná". In: SIMPÓSIO BRASILEIRO DE SOLOS TROPICAIS EM ENGENHARIA, 1, Anais, p. 706 – 723, Rio de Janeiro.
- 38. MURATORI, A. M.; GIUSTI, D. A.; CANALI, N. E. (1982). "Interpretação gravimétrica preliminar da configuração topográfica do embasamento cristalino no município de Curitiba". In: CONGRESSO BRASILEIRO DE GEOLOGIA, 32, Anais, SBG, v. 4, p. 1576 – 1580, Salvador.
- 39. NASCIMENTO, N. A. (1992). "Um estudo laboratorial em amostras indeformadas do solo sedimentar da Bacia de Curitiba e do solo residual de basalto do Paraná". Tese (Professor Titular). Universidade Federal do Paraná.

- 40. NASCIMENTO, N. A.; CHAMECKI, P. R.; RUSO NETO, L. MERCURI, A. (1994). Estudo paramétrico preliminar dos solos sedimentares característicos da Bacia de Curitiba". In: CONGRESSO BRASILEIRO DE MECÂNICA DOS SOLOS E ENGENHARIA DE FUNDAÇÕES, 10, ABMS, v.4, novembro, p.1277 1284, Foz do Iguaçu.
- 41. OLIVEIRA, L. M.; FELIPE, R. S.; BONACIM, E. A.; SALAZAR JR., O. (1997). "Mapeamento geológico geotécnico nas folhas COMEC A 100, A 103 e A 93 (parcial)". Projeto geotecnia região Metropolitana de Curitiba. Convênio 04/95, COMEC/MINEROPAR, 3v. setembro, Curitiba.
- 42. PEREIRA, E. M. "Avaliação da susceptibilidade a expansão e desagregação de rochas sedimentares na região do Alto Iguaçu PR". Inédito.
- 43. POLIDORO, G. B. F.; LIMA, R.E.; FELIPE, R. S. (1997). "A ocupação da Região Metropolitana de Curitiba sobre o quaternário e o risco geológico".
 In: CONGRESSO DA ASSOCIAÇÃO BRASILEIRA DE ESTUDOS DO QUATERNÁRIO (ABEQUA), 6, Resumos Expandidos, julho, Curitiba.
- 44. RELATÓRIO AMBIENTAL DA REGIÃO METROPOLITANA DE CURITIBA. COMEC. Abril, 1997.
- 45. SALAMUNI, E. (1998). "Tectônica da Bacia Sedimentar de Curitiba". Tese (Doutorado). Universidade Estadual Paulista. Instituto de Geociências e Ciências Exatas. Campus de Rio Claro.
- 46. SALAZAR JR., O.; FELIPE, R. S.; RIBAS, S. M.; OLIVEIRA, L. M.; SIEDLECKI, K. N.; PEREIRA, E. M. (1996). "Mapeamento geológico – geotécnico nas folhas COMEC A 137, A 138, A 139, A 140". Projeto geotecnia – Região Metropolitana de Curitiba. Convênio 04/95. COMEC/MINEROPAR. 3 v., Curitiba.
- 47. SCHUSSEL, Z. G. L. (1997). "Relatório ambiental da Região Metropolitana de Curitiba". COMEC/PNUD, 100p, Curitiba.

- 48. SIEDLECKI, K. N. (1998). "Respostas de um solo residual da Formação Guabirotuba (PR) frente à interação com soluções contaminantes". Dissertação (Mestrado). Universidade Federal do Paraná.
- 49. TRESCASES,J.J.; FORTIN,N.; MELFI,A.; NAHON,D. -1986- Rare earth elements accumulation in lateritic weathering of pliocene sediments Curitiba Basin (Brazil). Granada, p.259-272. (International Meeting Geochemistry of the Earth Surface and Processes of Mineral Formation).
- 50. VAN DER VEEN, C. (1953) "The Bearing Capacity of a Pile". III Int. Conf. on Soil Mech. and Found. Eng., Zurich, v. 2, p. 125-151.
- 51. VESIC, A. S. (1967). "Ultimate loads nd settlements of deep foundations in sand". In: SYMPOSIUM ON BEARING CAPACITY AND SETTLEMENT OF FOUNDATIONS, Duke University, USA, p. 53 – 68.

ANEXO 1

Características das Estacas

D =	25 cm
L =	14 m
N SPT	Tipo de solo
2	Argila siltosa orgânica com areia fina, preta, muito mole
2	Silte argiloso com areia fina e mica, cinza fofo.
2	
2	
1/15	Silte argiloso com areia fina e variegado, fofo
3	Silte argiloso com areia fina e mica, vermelho, fofo
4	Silte argiloso com areia fina e mica variegado, fofo
7	
5	Silte argiloso com areia fina e mica variegado, pouco compacto
5	
6	
5	Silte argiloso com areia fina e mica, variegado, pouco compacto e
10	medianamente compacto
8	
10	
12	
19	Silte arenoso com pedregulhos e mica, variegado, compacto, solo
17	residual
22	
27/27	

D =	20 cm
L =	12,9 m
N SPT	Tipo de solo
5	Silte argiloso com areia fina, vermelho, fofo
2	
4	
4/53	
3/24	Silte argiloso com areia fina, variegado, fofo
3	
4	
5	
3	Silte argiloso com areia fina, variegado, fofo a pouco compacto
3/25	
7	
7	Silte argiloso com areia fina, variegado, medianamente compacto
9	e pouco compacto
6	
8	
9	
10	Silte argiloso com areia fina e média, variegado, medianamente
15	compacto, solo residual
30/23	Silte arenoso com pedregulho, variegado, compacto, solo residual
28/24	

D =	25 cm
L =	12,9 m
N SPT	Tipo de solo
4/23	Argila siltosa com areia fina, conza, mole
4	
3/33	Silte argiloso com areia fina, amarelo, fofo
2	
2/40	
2/29	
3	Silte argiloso com areia fina, variegado, fofo
4	
3	
3	
4	
9	Silte argiloso com areia fina, variegado, medianamente compacto
11	
10	
11	
10	Silte argiloso com areia fina e média, pedregulho variegado,
9	medianamente compacto, solo residual
22	Silte arenoso com pedregulho, variegado, compacto, solo residual
28/22	

D =	33 cm
L =	12 m
N SPT	Tipo de solo
0	Argila orgânica siltosa muito mole preta
0	
0	
0	
9	Silte argiloso médio verde
9	
22	Silte argiloso duro verde
36	Silte argiloso duro amarelo e cinza
27	Silte argiloso duro amarelo

D = 38	3 cm
L = 10) m
N SPT	Tipo de solo
0	Argila orgânica siltosa muito mole preta
0	
0	
0	
9	Silte argiloso médio verde
9	-
22	Silte argiloso duro verde
36	Silte argiloso duro amarelo e cinza
27	Silte argiloso duro amarelo

D = 28 cm	
L =	10 m
N SPT	Tipo de solo
0	Argila orgânica siltosa muito mole preta
0	
2	
14	
17	Areia var. arg. com ped. finos e médios med. comp., cinza
10	Silte argiloso médio amarelo e cinza
12	Silte argiloso rijo amarelo e cinza
13	
18	
21	

D =	25 cm
L =	16,2 m
N SPT	Tipo de solo
5	Argila siltosa com areia fina, variegada, consistência média e
7	mole
5	
6	
5	
4	
5	Silte argiloso com areia fina, variegado, medianamente compacto
6	
7	
14	
8	
7	
9	
14	
19	
35	Silte argiloso com areia fina e média, pedregulho variegado,
42	medianamente compacto, solo residual
43/23	Silte arenoso com pedregulho, variegado, compacto, solo residual

D =	20 cm
L =	13 m
N SPT	Tipo de solo
4	Argila siltosa com areia fina e pedregulho, variegada,
6	consistência média
7	
17	
6/15	Areia arg. com silte e ped. variegada med. compacta
7	Argila siltosa com areia fina e pedregulho, cinza rija
13	
17	
24	Arg. silt. Com areia fina e ped. cinza muito rija a cons. média
10	Areia argilosa com silte pedregulho, cinza, medianamente
15	compacta
13	
12	Argila siltosa com areia fina e pedregulho variegada rija
14	
17	
21	Silte arenoso com pouca argila e pedregulho, variegada,
30/27	medianamente compacta a compacta

D =	25 cm
L =	17,3 m
N SPT	Tipo de solo
8	Aterro – argila silto-arenosa variegada
7	Argila siltosa com areia fina cinza escura consistência média
6	
13	
12	
9	Areia média e grossa, siltosa com pedregulho, variegada,
8	medianamente compacta
4	
5	Argila siltosa com areia fina, variegada, mole e consistência
5	média
7	
6	
8	Silte argiloso com areia fina, variegado, medianamente compacto
13	
12	
14	
10	
17	
15	
18	
20	Silte argiloso com areia fina, variegado compacto
23	
22	
53/19	Silte argiloso com areia fina, variegado muito compacto e
26	compacto
43	
25	
30/23	

D = 25 cm	
L =	15,75 m
N SPT	Tipo de solo
16	
12	Argila siltosa com areia fina, variegada, rija
15	
8	
6	
2	Argila silto - arenosa, variegada, muito mole
2	
2	
4/15	
10	
9	Argila siltosa com areia grossa, variegada, média
7	
10	
11	Silte argiloso com areia fina, variegado, medianamente compacto
7	à pouco compacto
8	
19	
20	
19	Silte argiloso com areia fina, variegado, compacto
25	
31	
30/23	
30/10	Silte argiloso com areia fina, variegado, muito compacto
30/15	

D = 20 cm	
L =	12 m
N SPT	Tipo de solo
4/15	Aterro - Argila siltosa orgânica com areia fina, preta, muito mole
3	Aterro – Argila orgânica, cinza escura
3	Silte argiloso com areia fina e variegado, fofo
2	
4	Argila Siltosa com areia fina, variegada, muito mole à mole
5	
4	
2	
2	
5	
14	Consistência média
20	Argila Siltosa com areia fina, variegada, rija
22	
20	
25	
31	Argila Siltosa com areia fina, cinza, muito rija à dura
36	
43	

D = 25 cm		
L =	L = 14 m	
N SPT	Tipo de solo	
4/15	Aterro - Argila siltosa orgânica com areia fina, preta, muito mole	
3	Aterro - Argila orgânica, cinza escura	
3	Silte argiloso com areia fina e variegado, fofo	
2		
4	Argila Siltosa com areia fina, variegada, muito mole à mole	
5		
4		
2		
2		
5		
14	Consistência média	
20	Argila Siltosa com areia fina, variegada, rija	
22		
20		
25		
31	Argila Siltosa com areia fina, cinza, muito rija à dura	
36		
43		

D = 18 cm		
L =	11 m	
N SPT	Tipo de solo	
	Solo superficial	
-	Argila orgânica siltosa, pouco arenosa, muito mole, preta	
2	Idem, arenosa, marrom e cinza	
4	Idem, mole	
5	Argila Siltosa, pouco arenosa, mole, cinza	
8		
4	Idem, consistência média	
13	Idem, Rija	
15		
18		
25	Idem, dura	
24		
23	Idem, arenosa	
28		
36	T 1	
30	Idem, pouco arenosa	
28		
30	Idem, arenosa	
33		
36		

D =	15 cm
L =	10 m
N SPT	Tipo de solo
-	Aterro de materiais diversos
-	Argila orgânica siltosa, pouco arenosa, muito mole, preta
6	
6	
7	Idem, cinza
10	
13	Idem, rija, marrom
14	
15	Idem, amarela
18	Idem, cinza
21	
23	
24	
26	Idem, dura
29	
33	
39	
35	
31	
34	

D =	25 cm
L =	12 m
N SPT	Tipo de solo
3	Silte argiloso com areia fina e pedregulho, marrom, fofo
4	
2	Argila siltosa com areia fina, cinza, muito mole
2	
3	
3	Argila siltosa orgânica com areia fina, preta, muito mole
3	Argila siltosa com areia fina e pedregulho, cinza, consistência
9	média a rija
11	
9	
10	Argila siltosa com areia fina e pedregulho, cinza, consistência
9	média a rija
11	
18	
19	
21	
23	Argila siltosa com areia fina e pedregulho, cinza, muito rija
25	
43	
49	

_

D =	30 cm
L =	14 m
N SPT	Tipo de solo
11	Aterro – Argila siltosa com areia fina, rija à média
7	
7	Idem, rija
14	
5	
8	
6	Argila siltosa com areia fina, vermelha, média e mole
5	
5	
5	
9	
11	
13	
16	
12	Silte argiloso com areia fina, variegado, muito compacta à
23	compacta
31	
30	
27	
37	

D =	20 cm
L =	13 m
N SPT	Tipo de solo
5	
4	Silte argiloso com areia fina, vermelho, pouco compacto e fofo
5	
4	
6	Argila Siltosa com argia fina vormalha módia
9 5	Argia Sitosa com arela inta, vermenta, media
6	
5	
5	Argila siltosa com areia grossa, variegada, média
6	
8	Argila siltosa com areia fina e média, variegada, média
6	
9	Argila siltosa com areia de textura variegada, pedregulho e
7	fragmentos de rocha, variegada, média
_	
5	Ancila ciltaga com ancia fina a módia vaniaga da niis à módia
12	Argna sinosa com arela ima e media, variegada, rija a media
7	
8	Argiia siitosa com areia fina e media, mica, variegada, média
/	
12	Argila siltosa com argia fina o módia, mica, variogada, rija
14	² ingna sinosa com areia mia e meuta, mica, vanegaŭa, ma
15	

D = 30 cm	
L =	16 m
N SPT	Tipo de solo
2	Silte argiloso com areia fina, vermelho, fofo
5	Silte argiloso com areia fina, vermelho, pouco compacto
8	
10	
10	
7	Argila Siltosa com areia fina, variegada, média
7	
9	
7	
7	
8	
8	Argila siltosa com areia fina e média, variegada, média
9	
6	
7	Argila siltosa com areia de textura variada e pedregulho,
6	variegada, média
12	Areia de textura variada, pouco argilosa, variegada,
11	medianamente compacta
15	Argila siltosa com pedregulho, fragmentos de rocha, variegada,
14	rija
20	Argila siltosa com muita areia fina, variegada, rija
21	<u> </u>
21	
33/25	Idem, dura

D =	25 cm
L =	15 m
N SPT	Tipo de solo
14	Silte argiloso com areia fina, marrom escuro, médio
12	
4	Argila siltosa com areia fina, variegada, mole a muito mole
3	
8	Silte argiloso com areia de textura variada, pedregulho,
	variegado, médio
9	Argila siltosa com areia fina, variegada, média
7	
4	
8	Argila siltosa com areia de textura variada, pedregulho,
	variegada, média
7	
6	Argila siltosa com areia, pedregulho, variegada, média
10	
11	
10	Argila siltosa com areia fina, pedregulho, variegada, rija e média
9	
15	
30	Silte arenoso com pouca argila e pedregulho, variegado, muito
50/20	compacto
48/23	

D = 25 cm	
L =	14,00 m
N SPT	Tipo de solo
9	
11	
13	Argila arenosa com silte, vermelha, consistência média e rija.
12	
10	
9	
6	
5	
5	Argila arenosa com silte, vermelha, consistência média e mole.
5	
8	
15	
4	
3	A 11 11 · · · 1 1 · · 1
4	Argila siltosa com arela variegada mole e multo mole.
2/33	
12	
15	
11	
12	Argila siltosa com areia variegada rija e dura.
55/20	

D = 25 cm	
L = 11,50 m	
N SPT	Tipo de solo
4	Argila silto-arenosa, vermelha, muito mole a mole
5 L	
8 7 15/8	Argila silto-arenosa, vermelha, consistência média.
6	Argila siltosa com areia grossa e pedregulho, variegada consistência média.
6 7 8 7 8 15	Argila siltosa com areia fina, variegada, consistência média.
19 31 23 21 21 30 19 20 31/25	Silte argilo-arenoso, variegado, compacto.

D = 20 cm	
L = 13,45 m	
N SPT	Tipo de solo
5	_
6	
10	Silte argiloso com areia fina, vermelho, pouco compacto e
7	medianamente compacto.
9	
11	
10	
10	Argila siltosa com areia fina, variegada, consistência média.
8	
8	
7	
8	
7	Argila siltosa com areia textura variada, pedregulho, variegada,
12	consistência média.
7	
4	
4	Argila siltosa com areia, textura variada, pedregulho, variegada,
5	mole.
5	
9	
4	Argila siltosa com areia, textura variada, pedregulho, variegada,
13	rija.
12	

D = 20 cm	
L =	9,00 m
N SPT	Tipo de solo
4	
3/25	Argila siltosa, variegada, mole a consistência média.
7	
8	
11	Argila siltosa, variegada, rija a consistência média.
10	
12	
16	Argila siltosa, cinza, rija a dura.
32	

D = 25 cm	
L = 14,00 m	
N SPT	Tipo de solo
6 5	Silte argiloso com areia fina e pedregulho, vermelho, pouco
6	compacto.
7	
8	
5	
5	
4	Argila siltosa com areia fina e pedregulho, cinza, mole.
4	
10	
11	
14	
19	Argila siltosa com areia fina e pedregulho, cinza, rija.
17	
14	
25	
19	Argila siltosa com areia, amarela rija.
19	
15	
22	Argila siltosa com areia fina, cinja, rija a muito rija.
38	
25/18	Areia argilosa com silte e pedregulho, cinza, muito compacto.
25/14	

D = 18 cm	
L =	12,20 m
N SPT	Tipo de solo
4	Aterro – argila siltosa, marrom, mole.
4	
5	
6	Argila siltosa, variegada, média.
6	
5	
5	Argila arenosa, variegada, mole.
5	
5	
6	
7	Argila siltosa, cinza, mole.
8	
10	
13	
15	Argila siltosa, cinza, rija a dura.
27	
23	
25	
27	Argila arenosa, cinza, dura.
27	

D = 20 cm		
L = 13,90 m		
N SPT	Tipo de solo	
10		
10	Argila siltosa com areia fina, vermelha, consistência média.	
8		
8		
3	Argila siltosa com areia fina, cinza, muito mole.	
3		
3	Argila siltosa com areia fina, variegada muito mole e consitência	
9	média.	
5	Argila siltosa com arei fina, variegada mole.	
5		
13		
11		
19		
17	Argila siltosa com areia fina, cinza clara, rija a muito rija.	
20		
21		
26		
28		

D =	20 cm
L = 11,90 m	
N SPT	Tipo de solo
17	
11	Argila siltosa com areia fina, variegada, rija e mole.
5	
5	
7	
11	
17	Argila siltosa com areia fina, cinza clara, rija.
14	
16	
18	
17	Agila siltosa com areia fina, cinza clara, rija a muito rija.
20	
29	
20	Areia siltosa, variegada, compacta.
24	
34	Argila siltosa com areia fina, cinza clara, muito rija a dura.
38	

D = 20 cm		
L = 12,10 m		
N SPT	Tipo de solo	
12	Argila siltosa, variegada.	
10		
6		
6	Argila siltosa, variegada, consistência média a mole.	
4		
5		
5		
6		
9	Argila siltosa, cinza clara, consistência média a rija.	
10		
15		
17		
14		

D = 20 cm	
L = 10,30 m	
N SPT	Tipo de solo
3	
3	Argila siltosa com areia fina, marrom, muito mole.
5	
7	
8	Argila siltosa com areia fina, marrom, consistência média.
8	
10	Argila arenosa com silte variegada, consistência média a rija.
12	
14	
15	Argila siltosa, cinza clara, rija a muito rija.
21	
23	
28	Argila siltosa com areia fina, cinza clara muito rija.
29	
26	
28	Argila arenosa com silte, cinza clara, muito rija.
35	

D = 28 cm	
L =	10,60 m
N SPT	Tipo de solo
5	Aterro – argila siltosa, marrom, mole.
4	-
6	Argila siltosa, preta, média.
5	
6	
7	Argila siltosa, variegada, mole.
8	
5	
6	Argila siltosa, roxa, média.
7	
6	Argila siltosa, variegada, rija.
13	
13	
16	Argila siltosa, variegada, rija.
18	
20	
22	
25	
33	Silte arenoso com pedregulhos, variegado compacto.
30	
31	
59	

D = 40 cm	
L = 12,00 m	
N SPT	Tipo de solo
4	
5	Silte com areia média, marrom avermelhado, pouco compacto.
7	
8	
5	
5	Argila siltosa, cinza, mole.
10	
10	
11	
12	Argila siltosa, cinza, rija.
14	
20	
30	
30	Argila com areia média, cinza, dura.
38	

D =	28 cm
N SPT	Tipo de solo
5	Aterro – argila siltosa marrom mole
4	
6	Argila siltosa, preta, média.
5	
6	
7	Argila siltosa, variegada, mole e média.
8	
5	
6	Argila siltosa, roxa, média.
7	
6	Argila siltosa, variegada, média e rija.
13	
13	Argila siltosa, cinza clara, rija.
16	
16	
18	Argila siltosa, variegada, rija.
20	
22	
25	Cilta anon aca com no decardhac variana da commanta
33	Sifte arenoso com pedreguinos, variegado compacto.
30	
31	
59	

_

D = 40 cm	
L =	12,3 m
N SPT	Tipo de solo
6	Argila siltosa pouco arenosa, consistência média vermelha
4	
2	Idem, mole
5	Idem, marrom
5	Idem, siltosa arenosa, amarela e cinza
6	
7	Idem, siltosa pouco arenosa, consistência média
9	
12	
12	Idem, rija
13	
16	Idem, siltosa pouco arenosa
18	
21	
22	ldem, dura
24	
28	
35	
34	
39	

D = 33 cm			
L = 12 m			
N SPT	Tipo de solo		
4	Aterro - Argila siltosa vermelha mole		
4			
5			
8	Argila arenosa, variegada, mole e média		
7			
6			
6			
4			
9			
7	Argila siltosa, cinza, média e rija		
7			
19			
17			
17			
20			
17	Argila arenosa, cinza, dura		
21			
28			
21			
20			
21			

ANEXO 2

Tabelas - Capacidade de Carga

Estaca	R (kN) Aoki –	R (kN) Décourt –	R (kN) Amaral	Pu (kN) Van der
	Velloso (1975)	Quaresma (1978)	(1982, 1999)	Veen
1	156	380	544	629
2	114	256	371	358
3	164	353	509	516
4	516	866	1059	884
5	648	1086	1316	1080
6	433	956	790	1093
7	388	565	794	757
8	365	532	700	378
9	390	664	983	865
10	329	576	745	739
11	226	281	424	300
12	413	489	710	529
13	294	325	420	303
14	167	220	270	151
15	223	186	481	501
16	441	705	1040	830
17	151	257	401	413
18	573	749	790	759
19	297	504	720	563
20	197	338	510	541
21	231	335	508	450
22	197	313	440	393
23	265	336	409	327
24	385	504	698	523
25	107	203	310	338
26	287	389	560	328
27	382	360	570	358
28	220	349	480	335
29	193	304	414	327
30	250	381	570	580
31	663	917	1240	1210
32	259	413	613	704
33	1130	1138	1260	987
34	399	555	809	991

Método Aoki – Velloso adaptado			
Estaca	R* (kN)	Pu (kN) Van der	
1	208	629	
2	150	358	
3	204	516	
4	717	884	
5	853	1080	
6	561	1093	
7	741	757	
8	510	378	
9	520	865	
10	439	739	
11	315	300	
12	549	529	
13	412	303	
14	234	151	
15	296	501	
16	561	830	
17	203	413	
18	458	759	
19	396	563	
20	321	541	
21	295	450	
22	276	393	
23	370	327	
24	513	523	
25	150	338	
26	399	328	
27	393	358	
28	307	335	
29	237	327	
30	324	580	
31	784	1210	
32	321	704	
33	1075	987	
34	481	991	

Método Aoki Velloso adaptado e corrigido com o fator global			
Estaca	R' (kN)	Pu (kN) Van der	
1	270	629	
2	195	358	
3	265	516	
4	933	884	
5	1109	1080	
6	729	1093	
7	964	757	
8	662	378	
9	676	865	
10	570	739	
11	410	300	
12	714	529	
13	535	303	
14	304	151	
15	385	501	
16	730	830	
17	264	413	
18	596	759	
19	515	563	
20	418	541	
21	383	450	
22	359	393	
23	480	327	
24	667	523	
25	195	338	
26	519	328	
27	511	358	
28	399	335	
29	308	327	
30	421	580	
31	1019	1210	
32	418	704	
33	1397	987	
34	625	991	

Método Aoki Velloso adaptado e corrigido com o fator			
	parcial		
Estaca	R'' (kN)	Pu (kN) Van der	
		Veen	
1	275	629	
2	197	358	
3	255	516	
4	888	884	
5	1041	1080	
6	627	1093	
7	915	757	
8	715	378	
9	733	865	
10	621	739	
11	390	300	
12	701	529	
13	514	303	
14	309	151	
15	389	501	
16	739	830	
17	279	413	
18	630	759	
19	539	563	
20	463	541	
21	399	450	
22	385	393	
23	466	327	
24	665	523	
25	207	338	
26	528	328	
27	519	358	
28	413	335	
29	314	327	
30	421	580	
31	989	1210	
32	417	704	
33	1318	987	
34	595	991	

Método Décourt -	- Quaresma corrigido com o fator global	
Estaca	R' (kN)	Pu (kN) Van der
		Veen
1	456	629
2	287	358
3	397	516
4	1052	884
5	1303	1080
6	640	1093
7	767	757
8	638	378
9	773	865
10	691	739
11	337	300
12	587	529
13	406	303
14	276	151
15	223	501
16	846	830
17	299	413
18	647	759
19	551	563
20	512	541
21	380	450
22	385	393
23	403	327
24	605	523
25	245	338
26	454	328
27	407	358
28	419	335
29	314	327
30	468	580
31	1100	1210
32	468	704
33	1138	987
34	637	991

Método Décourt - Quaresma corrigido com o fator parcial			
Estaca	R'' (kN)	Pu (kN) Van der	
		Veen	
1	444	629	
2	271	358	
3	400	516	
4	1200	884	
5	1562	1080	
6	682	1093	
7	770	757	
8	646	378	
9	738	865	
10	654	739	
11	329	300	
12	581	529	
13	396	303	
14	257	151	
15	201	501	
16	840	830	
17	269	413	
18	589	759	
19	507	563	
20	443	541	
21	349	450	
22	345	393	
23	408	327	
24	573	523	
25	222	338	
26	427	328	
27	387	358	
28	390	335	
29	306	327	
30	445	580	
31	1142	1210	
32	445	704	
33	1163	987	
34	634	991	

Método Amaral corrigido com o fator global			
Estaca	R' (kN)	Pu (kN) Van der	
		Veen	
1	462	629	
2	315	358	
3	433	516	
4	900	884	
5	1119	1080	
6	672	1093	
7	675	757	
8	595	378	
9	836	865	
10	633	739	
11	360	300	
12	604	529	
13	357	303	
14	230	151	
15	409	501	
16	884	830	
17	341	413	
18	672	759	
19	612	563	
20	434	541	
21	432	450	
22	374	393	
23	348	327	
24	593	523	
25	264	338	
26	476	328	
27	485	358	
28	408	335	
29	352	327	
30	485	580	
31	1054	1210	
32	521	704	
33	1071	987	
34	688	991	

Método Composto			
Estaca	R (kN)	Pu (kN) Van der	
	× /	Veen	
1	363	629	
2	249	358	
3	336	516	
4	792	884	
5	883	1080	
6	509	1093	
7	843	757	
8	468	378	
9	603	865	
10	540	739	
11	375	300	
12	604	529	
13	460	303	
14	276	151	
15	276	501	
16	718	830	
17	270	413	
18	583	759	
19	504	563	
20	443	541	
21	359	450	
22	344	393	
23	412	327	
24	615	523	
25	215	338	
26	449	328	
27	411	358	
28	385	335	
29	282	327	
30	442	580	
31	969	1210	
32	442	704	
33	1230	987	
34	637	991	

ANEXO 3

Método de Chin

ANEXO 4

Tabela - Recalques

Prova	R_1	ρ_1	$ ho_m$	R ₂	ρ ₂	$ ho_m$	R_3	ρ ₃	$ ho_m$
	(kN)	(mm)	(mm)	(kN)	(mm)	(mm)	(kN)	(mm)	(mm)
03	152	1,10	1,20	301	4,75	3,52	450	6,71	8,78
06	511	1,99	3,82	556	2,26	4,73	600	2,52	5,13
10	546	3,50	4,94	573	3,94	5,27	600	4,37	6,59
11	200	1,82	3,40	240	2,84	5,40	280	3,46	8,60
15	278	2,00	1,70	364	3,54	2,93	450	4,68	5,12
17	229	2,50	1,50	265	4,63	1,82	300	6,15	2,58
20	426	3,14	4,60	438	3,67	4,90	450	4,11	5 <i>,</i> 59
21	300	1,92	2,39	360	2,72	3,36	420	3,23	4,58
23	290	1,76	1,48	295	1,82	1,56	300	1,88	2,08
25	170	1,77	1,20	235	3,70	2,20	300	5,14	4,15
30	400	1,43	0,90	480	1,97	1,80	560	2,61	8,30
31	615	1,40	2,55	758	2,63	3,30	900	3,76	4,89
33	729	1,49	2,30	815	2,12	2,75	900	2,65	4,45
34	342	1,31	0,80	621	3,48	2,50	900	5,16	6,12

ANEXO 5

Tabela - Coeficientes a e b de Van der Veen

ESTACA	a (mm ⁻¹)	b
1	0,122	0,022
2	0,334	0,006
3	0,241	0,054
4	0,365	0,090
5	0,204	-0,333
6	0,175	0,000
7	0,149	0,025
8	0,309	-0,003
9	0,155	0,037
10	0,208	0,041
11	0,272	0,391
12	0,430	0,012
13	0,343	-0,025
14	1,938	-0,970
15	0,411	0,056
16	0,263	0,066
17	0,330	0,032
18	0,436	0,047
19	0,485	0,067
20	0,298	0,053
21	0,494	0,045
22	0,774	0,087
23	1,220	0,041
24	0,339	-0,072
25	0,473	0,105
26	1,010	0,095
27	0,343	0,030
28	0,752	0,054
29	0,797	0,023
30	0,175	0,560
31	0,228	0,077
32	0,488	0,002
33	0,404	0,062
34	0,404	0,078

De acordo com Aoki (1976), os pontos de uma prova de carga em realização permitem que se determine o valor de <u>a</u>. A norma brasileira estabelece os seguintes valores para a carga admissível P_{adm} :

$$P_{adm} = \frac{R}{2} = \frac{P_{15mm}}{1.5}$$

Supondo válida a expressão proposta por Van der Veen (1953), a condição acima conduzirá a:

$$P_{15mm} = \frac{3}{4}R$$

0,75R = R(1 - e^{-15a})
a \approx 0,0924mm^{-1}

Se a $\approx 0,0924$ mm⁻¹ é provável que P_{15mm}=3/4 R. Se a>0,0924 mm⁻¹, é prudente não confiar no valor da carga admissível calculada pela expressão:

$$P_{adm} = \frac{P_{15mm}}{1.5}, \text{ uma vez que}$$
$$\frac{R}{2} < \frac{P_{15mm}}{1.5}$$

O ideal seria prosseguir com o carregamento até a ruptura e adotar:

$$P_{adm} = \frac{R}{2}$$

Se a < 0,0924 mm⁻¹, bastaria prosseguir com o carregamento até um recalque de 15 mm e adotar para a carga admissível o valor:

$$P_{adm} = \frac{P_{15mm}}{1.5}$$
, uma vez que neste caso teríamos

$$\frac{R}{2} > \frac{P_{15mm}}{1.5}$$