UNIVERSIDADE FEDERAL DE PERNAMBUCO - UFPE CENTRO DE TECNOLOGIA E GEOCIÊNCIAS - CTG PÓS-GRADUAÇÃO EM ENGENHARAI CIVIL – GEOTECNIA - PPGEC

DANISETE PEREIRA DE SOUZA NETO

ESTUDOS GEOTÉCNICOS DE UM ATERRO DE SOLOS DA FORMAÇÃO BARREIRAS NA REGIÃO METROPOLITANA DO RECIFE

RECIFE 2016 Danisete Pereira de Souza Neto

Estudos geotécnicos de um aterro de solos da Formação Barreiras na região metropolitana do Recife

> Dissertação apresentada ao Programa de Pós-graduação em Engenharia Civil do Centro de Tecnologia e Geociências da Universidade Federal de Pernambuco, como requisito parcial à obtenção do título de mestre.

Área de concentração: Geotecnia

Orientador: Roberto Quental Coutinho

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

Г

S729e	Souza Neto, Danisete Pereira de. Estudos geotécnicos de um aterro região metropolitana do Recife / Danis 2016. 167 folhas, il., gráfs., tabs. Orientador: Prof. Dr. Roberto Quen Dissertação (Mestrado) – Universid Programa de Pós-Graduação em Engenh Inclui Referências e Anexos. 1. Engenharia Civil. 2. Compactador campo 5. Ensaios de Jaboratório 6.	de solos da formação barreiras na ete Pereira de Souza Neto Recife, tal Coutinho. dade Federal de Pernambuco. CTG. naria Civil, 2016. ção. 3. Aterro. 4. Investigação de
	campo. 5. Ensaios de laboratório. 6. Roberto Quental. (Orientador). II. Títul	Formação Barreiras. I. Coutinho, o.
		UFPE
	624 CDD (22. ed.)	BCTG/2016-72

UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

A comissão examinadora da Defesa de Dissertação de Mestrado

ESTUDOS GEOTÉCNICOS DE UM ATERRO DE SOLOS DA FORMAÇÃO BARREIRAS NA REGIÃO METROPOLITANA DO RECIFE

defendido por

Danisete Pereira de Souza Neto

Considera o candidato APROVADO

Recife, 23 de fevereiro de 2016

Banca Examinadora:

Prof. D.Sc. Roberto Quental Coutinho - UFPE (orientador)

Prof. D.Sc. Olavo Francisco dos Santos Júnior - UFRN (examinador externo)

Prof. D.Sc. Saul Barbosa Guedes - UFCG (examinador externo)

Dedico este trabalho aos meus pais, Olindina e Dércio. E a minha namorada, Michele.

AGRADECIMENTOS

Agradeço primeiramente a Deus, pela graça e pela força de perseverar.

Aos meus pais, Olindina e Dércio, ao meu irmão, Edércio, e a minha namorada e amiga, Michele, por terem me proporcionado o conforto necessário durante essa etapa árdua.

Ao professor Dr. Roberto Quental Coutinho, pelo apoio, pela orientação, pelo excelente aprendizado na área de geotecnia e pela oportunidade de participar em seus projetos com a equipe multidisciplinar do GEGEP.

Aos professores Olavo Santos e Saul Guedes, pelas sugestões e aceitação em participar desta banca examinadora.

Aos professores Ricardo Severo, Robson Lima, António Fonseca e Ismael Domíngez, pelos ensinamentos, orientações e pelo bom humor levado ao ambiente de trabalho.

Aos amigos do GEGEP: Raíssa, Bárbara, Iran, Hugo, Wesley, Tahyara, Bruno, Wézio, Francisco, Felipe, Rafhael, Eduardo, Amanda, Breno, Jéssica, Daniela, Cláudia, Monalyssa, Mayara, Diego, Bethânia, Sarepta, Gleice, Cristiane, Natanielton, Cristiana, Rodrigo, Everaldo e Anna Paula pelo convívio e aprendizado ao longo desses dois anos.

E a todos que, direta ou indiretamente, colaboraram para o desenvolvimento desta pesquisa.

Corrida, hoje Vitória, amanhã. (Edi Rock)

RESUMO

Este trabalho apresenta um estudo geotécnico de um aterro de solos sedimentares da Formação Barreiras localizado na região metropolitana do Recife. Os parâmetros geotécnicos estudados foram obtidos a partir de uma campanha de investigação de campo e laboratório. Durante a investigação de campo, foram realizadas sondagens de simples reconhecimento, retirada de amostras indeformadas (bloco) e amolgadas representativas e ensaios de permeabilidade "in situ" (permeâmetro guelph). Na campanha de laboratório foram realizados ensaios de granulometria, limites de consistência, densidade real dos grãos, compactação, ensaios triaxiais drenados e não drenados e edométricos duplos. A composição granulométrica mostrou que o aterro pode ser classificado, em sua maior parte, como areia argilosa (SC). Entretanto, também foi encontrada argila arenosa pouco plástica (CL). Os valores de N_{SPT} nos trechos das sondagens correspondentes ao aterro variaram entre 2 e 15 golpes. Muito frequentemente foram observados segmentos de 4 a 5 metros com N_{SPT} baixos (<10) para o que se espera para um aterro bem compactado. A permeabilidade do solo do aterro apresentou-se relativamente baixa (na ordem de 10⁻⁸ m/s). Este valor de permeabilidade permite a infiltração de água no corpo do aterro, porém deve ocorrer dificuldade na completa penetração da água. Quanto aos parâmetros de resistência, obtidos através de ensaios triaxiais, o ângulo de atrito variou de 31,4° a 36,7° e a coesão de 1,2 a 4,3 kPa. Os maiores valores para os parâmetros de resistência foram encontrados nas amostras compactadas em laboratório. A análise da compressibilidade dos 8 blocos coletados no aterro mostrou que relativamente ao colapso, três (35,7 %) amostras foram classificadas segundo Reginatto e Ferrero (1973) como verdadeiramente colapsível e grande parte dessas amostras foram classificadas segundo Jennings e Knight (1975) como "problema moderado".

Palavras-chave: Compactação. Aterro. Investigação de campo. Ensaios de laboratório. Formação Barreiras.

ABSTRACT

This academic work presents a geotechnical study of a sedimentary soil embankment of Barreiras Formation located in the metropolitan region of Recife. The geotechnical parameters were obtained from a field and laboratory research campaign. During the field investigation, simple reconnaissance probes were carried out, taken from undisturbed samples (block) and deformed (bag) representative and permeability tests "in situ" (Guelph permeameter). In laboratory campaign were carried grading tests, consistency limits, real density of the grain, compaction, drained and undrained triaxial tests and double oedometric. The particle size distribution showed that the embankment can be classified mostly as clayey sand (SC). However, it was also found little plastic sandy clay (CL). The N_{SPT} values in parts of polls related to the landfill ranged between 2 and 15 hits. Very often we have been observed segments 5-6 meters with low N_{SPT} (<10) to what is expected for a well compacted landfill. The landfill soil permeability showed relatively low (on the order of 10^{-8} m / s). This permeability value allows the water entering into the landfill body, but should you experience difficulty in complete penetration of water. As for the strength parameters, friction angle ranged from 31.4 to 36.7° and cohesion 1,2 to 4.3 kPa. The highest values for the strength parameters were found in the samples compacted in the laboratory. The analysis showed that the compressibility relative to collapse, three (35.7 %) samples were sorted Reginatto and Ferrero (1973) as truly collapsible and much of the landfill samples were sorted Jennings and Knight, 1975 as "moderate problem"

Keywords: Compaction. Landfill. Field investigation. Laboratory tests. Barreiras Formation.

LISTA DE ILUSTRAÇÕES

Figura 2.1 - (a) Amostra "solta"; (b) amostra compactada	
Figura 2.2 – Curva de compactação de um solo	
Figura 2.3 - Efeito da compactação em estruturas de solos argilosos	
Figura 2.4 -Efeito da compactação sobre a permeabilidade dos solos argilosos	
Figura 2.5 - Efeito da compactação sobre a compressibilidade unidimensional de solo	s argilosos
Figura 2.6 – Efeito da compactação sobre a resistência ao cisalhamento de solos ar	gilosos em
função da umidade de moldagem	
Figura 2.7 - Efeito da compactação sobre a resistência de solos argilosos	
Figura 2.8 - Modelos estruturais para solos colapsíveis	
Figura 2.9 - Ensaio edométrico simples	
Figura 2.10 - Ensaio edométrico duplo	
Figura 3.1 – Modelo digital do terreno – topografia do terreno natural	40
Figura 3.2 – Modelo digital do terreno – topografia após conclusão dos aterros	41
Figura 3.3 – Ácido clorídrico em contato com o solo	
Figura 3.4 - Localização dos ensaios de permeabilidade, amostras indeformadas	(bloco) e
amostras amolgadas (saco) das janelas	43
Figura 3.5 – Localização das sondagens à percussão	
Figura 3.6 - (a) Bloco 1 (b) bloco 2	46
Figura 3.7 - Bloco 3 - região de fronteira entre o terreno natural e o aterro	46
Figura 3.8 - (a) Bloco 4 (b) bloco 5	47
Figura 3.9 - Vista frontal dos blocos 6 e 7	47
Figura 3.10 - (a) Bloco 8 (b) bloco 9	48
Figura 3.11 - (a) Bloco 10 (b) bloco 11	
Figura 3.12 - Princípio de Mariotte empregado no furo do ensaio "guelph"	
Figura 3.13 - Esquema do permeâmetro guelph	51
Figura 3.14 – Ensaio com permeâmetro guelph	
Figura 3.15- Limites de consistência	53
Figura 4.1 - Perfil geotécnico típico da área A – seção 1	
Figura 4.2 - Perfil geotécnico típico da área A – seção 2	
Figura 4.3 - Perfil geotécnico típico da área B – seção 3	
Figura 4.4 - Perfil geotécnico típico da área B – seção 4	

Figura 4.5 - Aterro: resultados do ensaio "Guelph" da vertical 1. Permeabilidade (K_{fs}), potencial
mátrico de fluxo (ϕ_m), umidade inicial e final63
Figura 4.6 - Aterro: resultados do ensaio "Guelph" da vertical 2. Permeabilidade (K_{fs}), potencial
mátrico de fluxo (ϕ_m), umidade inicial e final64
Figura 4.7 - Aterro: resultados do ensaio "Guelph" da vertical 3. Permeabilidade (K_{fs}), potencial
mátrico de fluxo (ϕ_m), umidade inicial e final65
Figura 4.8 - Aterro: resultados do ensaio "Guelph" da vertical 5. Permeabilidade (K_{fs}), potencial
mátrico de fluxo (ϕ_m), umidade inicial e final
Figura 4.9 - Aterro: resultados do ensaio "Guelph" da vertical 6. Permeabilidade (K_{fs}), potencial
mátrico de fluxo (ϕ_m), umidade inicial e final67
Figura 4.10 - Terreno natural: resultados do ensaio "Guelph" da vertical 4. Permeabilidade
(K_{fs}) , potencial mátrico de fluxo (φ_m), umidade inicial e final
Figura 4.11 - Terreno natural: resultados do ensaio "Guelph" da vertical 7. Permeabilidade
(K_{fs}) , potencial mátrico de fluxo (ϕ_m), umidade inicial e final69
Figura 4.12 – Frequência – densidade de laboratório71
Figura 4.13 – Frequência – massa espefícica "in situ" – Janeiro/1372
Figura 4.14 - Frequência – massa específica "in situ" – Fevereiro/1372
Figura 4.15 - Frequência – massa específica "in situ" – Março/1373
Figura 4.16 - Frequência – massa específica "in situ" – Abril/1373
Figura 4.17 - Frequência – massa específica "in situ" – Janeiro a Abril/1374
Figura 4.18 – Frequência – teor de umidade ótimo - laboratório
Figura 4.19 – Frequência – teor de umidade - campo75
Figura 4.20 – Curva granulométrica típica do solo SM – Bloco 1
Figura 4.21 - Curva granulométrica típica do solo CL – Bloco 777
Figura 4.22 - Curva granulométrica típica do solo SC – Bloco 677
Figura 4.23 - Carta de plasticidade com pontos da classificação dos finos dos materiais
estudados79
Figura 4.24 – Curva de compactação típica para solo SM – Bloco 181
Figura 4.25 - Curva de compactação típica para solo SC – Bloco 6
Figura 4.26 - Curva de compactação típica para solo CL – Bloco 7
Figura 4.27 - Comparação entre amostra inundada e na umidade natural – bloco 190
Figura 4.28 - Comparação entre amostra inundada e na umidade natural – bloco 290
Figura 4.29 - Comparação entre amostra inundada e na umidade natural – bloco 391
Figura 4.30 - Comparação entre amostra inundada e na umidade natural – bloco 4

Figura 4.31 - Comparação entre amostra inundada e na umidade natural – bloco 592
Figura 4.32 - Comparação entre amostra inundada e na umidade natural – bloco 692
Figura 4.33 - Comparação entre amostra inundada e na umidade natural – bloco 793
Figura 4.34 - Comparação entre amostra inundada e na umidade natural – bloco 893
Figura 4.35 - Comparação entre amostra inundada e na umidade natural – bloco 994
Figura 4.36 - Comparação entre amostra inundada e na umidade natural – bloco 1094
Figura 4.37 - Comparação entre amostra inundada e na umidade natural – bloco 1195
Figura 4.38 - Comparação entre amostra inundada e compactada na umidade ótima – janela 1
ECAS 13995
Figura 4.39 - Comparação entre amostra inundada e compactada na umidade ótima – janela 2
ECAS 142
Figura 4.40 - Comparação entre amostra inundada e compactada na umidade ótima – janela 2
ECAS 145
Figura 4.41 - Comparação entre amostra inundada e compactada na umidade ótima - janela 3
ECAS 165
Figura 4.42 – Ensaio triaxial CID: curva tensão x deformação – bloco 1102
Figura 4.43 – Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 1 102
Figura 4.44 – Ensaio triaxial CID: Trajetória de tensões – bloco 1102
Figura 4.45 - Ensaio triaxial CID: curva tensão x deformação – bloco 2103
Figura 4.46 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 2103
Figura 4.47 - Ensaio triaxial CID: Trajetória de tensões – bloco 2103
Figura 4.48 - Ensaio triaxial CID: curva tensão x deformação – bloco 3104
Figura 4.49 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 3 104
Figura 4.50 - Ensaio triaxial CID: Trajetória de tensões – bloco 3
Figura 4.51 - Ensaio triaxial CID: curva tensão x deformação – bloco 4105
Figura 4.52 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 4 105
Figura 4.53 - Ensaio triaxial CID: Trajetória de tensões – bloco 4105
Figura 4.54 - Ensaio triaxial CID: curva tensão x deformação – bloco 5
Figura 4.55 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 5 106
Figura 4.56 - Ensaio triaxial CID: Trajetória de tensões – bloco 5
Figura 4.57 - Ensaio triaxial CID: curva tensão x deformação – bloco 6
Figura 4.58 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 6107
Figura 4.59 - Ensaio triaxial CID: Trajetória de tensões – bloco 6107
Figura 4.60 - Ensaio triaxial CID: curva tensão x deformação – bloco 7

Figura 4.61 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 7108
Figura 4.62 - Ensaio triaxial CID: Trajetória de tensões – bloco 7108
Figura 4.63 - Ensaio triaxial CID: curva tensão x deformação – bloco 8109
Figura 4.64 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 8 109
Figura 4.65 - Ensaio triaxial CID: Trajetória de tensões – bloco 8109
Figura 4.66 - Ensaio triaxial CID: curva tensão x deformação – bloco 9110
Figura 4.67 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 9110
Figura 4.68 - Ensaio triaxial CID: Trajetória de tensões – bloco 9110
Figura 4.69 - Ensaio triaxial CID: curva tensão x deformação – bloco 10111
Figura 4.70 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 10111
Figura 4.71 - Ensaio triaxial CID: Trajetória de tensões – bloco 10111
Figura 4.72 - Ensaio triaxial CID: curva tensão x deformação – bloco 11112
Figura 4.73 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 11112
Figura 4.74 - Ensaio triaxial CID: Trajetória de tensões – bloco 11112
Figura 4.75 - Ensaio triaxial CID: curva tensão x deformação – bloco 4 (amostra compactada
em laboratório)
Figura 4.76 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 4 (amostra
compactada em laboratório)113
Figura 4.77 - Ensaio triaxial CID: Trajetória de tensões – bloco 4 (amostra compactada em
laboratório)113
Figura 4.78 - Ensaio triaxial CID: curva tensão x deformação – bloco 11 (amostra compactada
em laboratório)
Figura 4.79 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 11 (amostra
compactada em laboratório)114
Figura 4.80 - Ensaio triaxial CID: Trajetória de tensões – bloco 11 (amostra compactada em
laboratório)114
Figura 4.81 - Ensaio triaxial CIU: curva tensão x deformação – janela 1 ECAS 139115
Figura 4.82 - Ensaio triaxial CIU: Trajetória de tensões – janela 1 ECAS 139115
Figura 4.83 – Ensaio triaxial CIU: Poropressão x Deformação Específica Axial – janela 1 ECAS
139
Figura 4.84 - Ensaio triaxial CIU: curva tensão x deformação – janela 2 ECAS 142116
Figura 4.85 - Ensaio triaxial CIU: Trajetória de tensões – janela 2 ECAS 142116
Figura 4.86 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial – janela 2 ECAS
142

Figura 4.87 - Ensaio triaxial CIU: curva tensão x deformação – janela 2 ECAS 145117
Figura 4.88 - Ensaio triaxial CIU: Trajetória de tensões – janela 2 ECAS 145117
Figura 4.89 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial – janela 2 ECAS
145
Figura 4.90 - Ensaio triaxial CIU: curva tensão x deformação – janela 3 ECAS 165118
Figura 4.91 - Ensaio triaxial CIU: Trajetória de tensões – janela 3 ECAS 165118
Figura 4.92 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial – janela 3 ECAS
165
Figura 5.1 – Curva granulométrica: BL1, BL2 e ECAS 142
Figura 5.2 - Curva granulométrica: BL5, BL6 e ECA 165123
Figura 5.3 - Curva granulométrica: BL8, BL9, ECAS 139 e ECAS 145124
Figura 5.4 - Curva granulométrica: BL13, BL4, BL7, BL10, BL11124
Figura 5.5 – Curva granulométrica de todos os blocos e janelas125
Figura 5.6 – Curvas de compactação: BL1, BL2 e ECAS 142127
Figura 5.7 - Curvas de compactação: BL5, BL6 e ECAS 165128
Figura 5.8 - Curvas de compactação: BL8, BL9 e ECAS 145128
Figura 5.9 - Curvas de compactação: BL3, BL4, BL7, BL10 e BL11129
Figura 5.10 – Curvas de compactação de todos os blocos e janelas129
Figura 5.11 – Massa específica seca máxima x massa específica seca em campo131
Figura 5.12 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não
inundado – BL1, BL2 e ECAS 142134
Figura 5.13 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não
inundado – BL5, BL6 e ECAS 165134
Figura 5.14 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não
inundado – BL8, BL9, ECAS 139 e ECAS 145135
Figura 5.15 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não
inundado – BL3, BL4, BL7, BL10 e BL11135
Figura 5.16 - Gráfico deformação volumétrica x tensão vertical efetiva - corpo de prova
inundado – BL1, BL2 e ECAS 142136
Figura 5.17 - Gráfico deformação volumétrica x tensão vertical efetiva - corpo de prova
inundado – BL5, BL6 e ECAS 165136
Figura 5.18 - Gráfico deformação volumétrica x tensão vertical efetiva - corpo de prova
inundado – BL8, BL9, ECAS 139 e ECAS 145137

Figura 5.19 - Gráfico deformação volumétrica x tensão vertical efetiva - c	orpo de prova
inundado – BL3, BL4, BL7, BL10 e BL11	
Figura 5.20 - Colapso x tensão vertical efetiva - ensaios edométricos duplos	– BL1, BL2 e
ECAS 142	
Figura 5.21 - Colapso x tensão vertical efetiva – ensaios edométricos duplos – BI	.8, BL9, ECAS
145 e ECAS 139	
Figura 5.22 - Colapso x tensão vertical efetiva - ensaios edométricos duplos	– BL5, BL6 e
ECAS 165	

LISTA DE TABELAS

Tabela 2.1 - Equipamentos de compactação	26
Tabela 2.2 - Métodos indiretos e diretos de identificação de solos colapsíveis	33
Tabela 2.3 - Critérios de identificação de solos colapsíveis	34
Tabela 2.4 - Classificação da colapsibilidade nas obras de engenharia (Jennings e Knig	,ht, 1975)
	36
Tabela 3.1 - Resumo da distribuição dos blocos na área de estudo	49
Tabela 3.2 - Classificação dos grãos constituintes do solo	53
Tabela 3.3 - Resumo dos ensaios edométricos realizados	55
Tabela 4.1 – Aterro: valores da permeabilidade (K_{fs}), potencial mátrico de fluxo do s	solo (φ _m),
umidade inicial e final	61
Tabela 4.2 – Terreno natural: valores da permeabilidade (K _{fs}), potencial mátrico de	fluxo do
solo (φ _m), umidade inicial e final	62
Tabela 4.3 – Permeabilidade de solos da Formação Barreiras (Atualizada a partir de	Coutinho
e Severo, 2009)	70
Tabela 4.4 - Composição granulométrica do solo, limite de consistência e classificaçã	o do solo
- Bloco	78
Tabela 4.5 - Composição granulométrica do solo, limite de consistência e classificaçã	o do solo
- Janela	78
Tabela 4.6 – Caracterização de solos da Formação Barreiras	79
Tabela 4.7 – Resumo dos resultados de compactação	80
Tabela 4.8 – Resumo dos resultados do ensaio edométrico duplo – bloco 1	
Tabela 4.9 - Resumo dos resultados do ensaio edométrico duplo – bloco 2	83
Tabela 4.10 - Resumo dos resultados do ensaio edométrico duplo – bloco 3	83
Tabela 4.11 - Resumo dos resultados do ensaio edométrico duplo – bloco 4	84
Tabela 4.12 - Resumo dos resultados do ensaio edométrico duplo – bloco 5	84
Tabela 4.13 - Resumo dos resultados do ensaio edométrico duplo – bloco 6	85
Tabela 4.14 - Resumo dos resultados do ensaio edométrico duplo – bloco 7	85
Tabela 4.15 - Resumo dos resultados do ensaio edométrico duplo – bloco 8	86
Tabela 4.16 - Resumo dos resultados do ensaio edométrico duplo – bloco 9	
Tabela 4.17 - Resumo dos resultados do ensaio edométrico duplo – bloco 10	87
Tabela 4.18 - Resumo dos resultados do ensaio edométrico duplo – bloco 11	87
Tabela 4.19 - Resumo dos resultados do ensaio edométrico duplo – janela 1 ECAS 13	3988

Tabela 4.20 - Resumo dos resultados do ensaio edométrico duplo – janela 2 ECAS 14288
Tabela 4.21 - Resumo dos resultados do ensaio edométrico duplo – janela 2 ECAS 145 89
Tabela 4.22 - Resumo dos resultados do ensaio edométrico duplo – janela 3 ECAS 16589
Tabela 4.23 – Classificação da colapsibilidade do solo segundo Reginato e Ferrero (1973)98
Tabela 4.24 – Potencial de colapso – classificação de Jennings e Knight (1975)100
Tabela 4.25 – Resumo dos ângulos de atritos e coesão101
Tabela 4.26 – Parâmetros de resistência de pico de solos provenientes da Formação Barreiras
na RMR e outras119
Tabela 5.1 - Relação (localização e granulométrica) entre o material dos blocos e das janelas
Tabela 5.2 - Alguns valores típicos de valores de permeabilidade (Sousa Pinto, 2006)122
Tabela 5.3 – Valores dos limites de consistência para os blocos e as janelas correspondentes
Tabela 5.4 – Densidade seca máxima e umidade ótima do material dos blocos e das janelas
correspondentes
Tabela 5.5 - Grau de compactação para alguns blocos retirados
Tabela 5.6 - Comparação dos parâmetros determinados nos ensaios de adensamento entre os
blocos indeformados e amostras compactadas correspondentes
Tabela 5.7 – Comparação do potencial de colapso entre o material indeformado do blocos e o
material compactado das janelas140
Tabela 5.8 – Resumo dos parâmetros de resistência dos blocos e janelas144

SUMÁRIO

1.	CAPÍTULO 1 - INTRODUÇÃO	20
1.1.	Considerações iniciais	20
1.2.	Objetivos	21
1.2.1.	Geral	21
1.2.2.	Específicos	21
1.3.	Estrutura da dissertação	21
2.	CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA	23
2.1.	Compactação dos solos	23
2.1.1.	Compactação em laboratório	24
2.1.2.	Compactação de campo	25
2.1.3.	Estrutura de solos argilosos compactados	26
2.1.4.	Comportamento geotécnico dos solos coesivos compactados	27
2.2.	Solos de comportamento colapsíveis	30
2.2.1.	Estrutura dos solos colapsíveis	31
2.2.2.	Comportamento de solos colapsíveis	32
2.2.3.	Métodos de classificação e identificação de solos colapsíveis	32
2.2.3.1	. Métodos indiretos	33
2.2.3.2	. Métodos diretos	35
3.	CAPÍTULO 3 – CARACTERIZAÇÃO DA ÁREA ESTUDADA E METODOLOG	IA
DAS A	TIVIDADES DE CAMPO E LABORATÓRIO	39
3.1.	Área de estudo	39
3.1.1.	Geologia	41
3.2.	Investigação de campo	42
3.2.1.	Sondagens de simples reconhecimento	43
3.2.2.	Coleta e extração de amostras de solo	44
3.2.3.	Condutividade hidráulica	49

3.3.	Campanha de laboratório5	2
3.3.1.	Ensaios de caracterização física5	2
3.3.1.1.	Análise granulométrica5	2
3.3.1.2.	Limites de consistência5	3
3.3.1.3.	Compactação5	4
3.3.2.	Ensaio edométrico duplo5	4
3.3.3.	Ensaios Triaxiais5	5
4.	CAPÍTULO 4 – APRESENTAÇÃO DOS RESULTADOS5	7
4.1.	Investigação de campo5	7
4.1.1.	Sondagem de simples reconhecimento5	7
4.1.2.	Condutividade hidráulica	<i>i</i> 0
4.1.3.	Informações complementares de compactação em campo7	0
4.2.	Campanha de laboratório7	6
4.2.1.	Análise granulométrica7	6
4.2.2.	Resultados de compactação8	60
4.2.3.	Resultados do ensaio edométrico8	32
4.2.4.	Resultados do potencial de colapso do solo9	17
4.2.5.	Resultados dos ensaios de compressão triaxial10	0
5.	CAPÍTULO 5 – DISCUSSÃO DOS RESULTADOS12	21
5.1.	Condutividade hidráulica "in situ"	2
5.2.	Análise granulométrica12	2
5.3.	Comparação dos parâmetros de compactação12	:6
5.4.	Comparação dos parâmetros de compressibilidade13	2
5.5.	Potencial de colapso do solo13	9
5.6.	Comparação dos parâmetros de resistência ao cisalhamento14	3
6.	CAPÍTULO 6 – CONCLUSÕES14	5
6.1.	Sugestões para futuras pesquisas14	7

REFERÊNCIAS	
ANEXO A	

1. CAPÍTULO 1 - INTRODUÇÃO

1.1. Considerações iniciais

As atividades antrópicas, na sua maioria, se relacionam com a superfície terrestre de forma direta. A estabilidade do maciço de solo, ou rochoso, envolvido nessas atividades depende diretamente da natureza geológica e das características geotécnicas e geomorfológicas, conjugadas a outros fatores predisponentes da superfície.

Grandes projetos geotécnicos, geralmente, necessitam de movimentação de terra para atender as condições requeridas pela obra. O solo local pode apresentar baixa resistência, alta compressibilidade, ou características especiais no seu comportamento. Trindade et al. (2008) citam que a estabilização do solo por meio de compactação é a técnica de estabilização de maior aplicação na engenharia geotécnica.

A compactação transforma o solo natural em um material com melhor comportamento mecânico. Entre as melhorias observadas nas suas propriedades, destacam-se o aumento do seu peso específico, aumento da resistência ao cisalhamento, redução da compressibilidade e redução da permeabilidade.

Para um adequado grau de resistência mecânica, compressibilidade e permeabilidade a compactação deve ser executada conforme exigências de projeto. Quando executada de forma indevida ou ineficiente a obra não apresenta um funcionamento adequado, gerando custos de manutenção e problemas como recalque excessivo, ruptura de aterros, deterioração prematura de calçadas, pisos e pavimentos em áreas urbanas, ruptura de tubulações enterradas, vazamento em piscina e reservatório enterrado e percolação excessiva de água em aterros de barragens de terra (Trindade et al., 2008).

A fim de minimizar qualquer problema futuro nas obras de terraplenagem a serem executadas na região é necessário empregar estudos específicos de laboratório, investigação de campo, procedimento construtivo de campo adequado e instrumentação de campo para responder perguntas que provavelmente surgirão durante as fases de projeto, construção e operação.

O presente trabalho visa dar continuidade aos estudos geotécnicos realizados pelo Grupo de Engenharia Geotécnica de Encostas, Planícies e Desastres – GEGEP, coordenado pelo professor Dr. Roberto Quental Coutinho, consistindo na análise comparativa de parâmetros de

solo da Formação Barreias compactado em campo e em laboratório na umidade ótima e densidade específica seca aparente máxima utilizando a energia Proctor Normal.

Nesta dissertação, apresenta-se um amplo estudo geotécnico de um aterro de solos da Formação Barreiras. O comportamento desses solos compactados em campo e em laboratório foi analisado através de uma investigação de campo e campanha de laboratório.

A campanha de laboratório foi realizada no laboratório de solos e instrumentação da UFPE. Tais ensaios foram realizados a fim de determinar os parâmetros de um aterro nas condições existentes no campo e nas condições de compactação em laboratório na energia Proctor Normal.

1.2. Objetivos

1.2.1. Geral

O objetivo geral desta pesquisa consiste em estudar o comportamento geotécnico de um aterro de solos da Formação Barreiras. Os diversos parâmetros que sofrem influência no processo mecânico de compactação do solo são determinados e analisados.

1.2.2. Específicos

Como objetivos específicos destacam-se:

- Desenvolver investigação geotécnica de campo e laboratório;
- Avaliar e comparar os parâmetros de compressibilidade do solo compactado em campo com os parâmetros do solo compactado em laboratório na umidade ótima;
- Avaliação do potencial de colapso do solo por meio de ensaios de laboratório;
- Avaliar e comparar os parâmetros de compactação do solo compactado em campo com os parâmetros do solo compactado em laboratório na umidade ótima;
- Avaliar e comparar os parâmetros de resistência ao cisalhamento do solo compactado em campo com os parâmetros do solo compactado em laboratório na umidade ótima;
- Avaliar e comparar os resultados de condutividade hidráulica "in situ", utilizando o permeâmetro guelph.

1.3. Estrutura da dissertação

Para efeito de apresentação, esta dissertação está dividida em 6 capítulos, tendo início por este capítulo introdutório, com os demais apresentando a seguinte distribuição de conteúdo:

O capítulo 2 apresenta uma revisão bibliográfica sobre compactação de solos e potencial de colapso. Esses assuntos são considerados de fundamental importância para o entendimento do tema da dissertação, com objetivo de criar condições necessárias para um melhor aproveitamento do conteúdo exposto neste trabalho.

O capítulo 3 é composto por uma breve caracterização da área de estudo e pela apresentação da metodologia da investigação de campo (sondagens de simples reconhecimento, coleta de amostras indeformadas (bloco) e amolgadas representativas e ensaio de condutividade hidráulica) e campanha de laboratório (ensaios de granulometria, limites de consistência, densidade real dos grãos, compactação, ensaios triaxiais drenados e não drenados e edométricos duplos).

A apresentação dos resultados é feita no capítulo 4. Cada atividade desenvolvida é apresentada e acompanha um comentário sucinto. Inicia-se pelas atividades de campo e conclui-se com os ensaios de laboratório.

O capítulo 5 contempla uma análise comparativa dos parâmetros apresentados no capítulo 4. Comparam-se resultados de condutividade hidráulica "in situ" (guelph) e parâmetros do solo do aterro obtidos através de blocos indeformados coletadas no aterro e terreno natural / jazida com parâmetros obtidos de amostras compactadas em laboratório na umidade ótima (energia Proctor Normal).

No capítulo 5 é exposto um resumo das principais conclusões da dissertação e sugestões para futuras pesquisas.

2. CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA

Apresenta-se, neste capítulo, uma revisão bibliográfica sobre os assuntos considerados de fundamental importância para o entendimento do tema da dissertação, com objetivo de criar condições necessárias para um melhor aproveitamento do conteúdo exposto neste trabalho.

2.1. Compactação dos solos

Grandes obras geotécnicas, geralmente, necessitam de movimentação de terra para atender as condições requeridas pelo projeto. O solo local pode apresentar baixa resistência, alta compressibilidade, elevado índice de vazios, ou características especiais no seu comportamento tornando-o problemático sobre o ponto de vista da engenharia. A estabilização do solo por meio de compactação é a de maior aplicação na engenharia geotécnica.

A compactação de solo é definida como o processo de transformar o solo natural em um material com melhores comportamentos mecânicos. As partículas são agrupadas devido à redução do volume de ar; o volume de água presente no solo não sofre mudança significativa (Figura 2.1). Entre as propriedades beneficiadas devido à compactação, destacam-se o aumento do seu peso específico, aumento da resistência ao cisalhamento, redução da compressibilidade e redução da permeabilidade. Sendo assim, se a compactação for executada indevidamente, a massa de solo pode deformar além do admissível adotado em projeto, permitir percolação excessiva de água, rupturas de aterros, entre outros problemas que geram custos não previstos no orçamento com manutenção da obra ou até mesmo a perda da estrutura.

Segundo Souza Pinto (2006), a técnica de compactação foi desenvolvida pelo engenheiro norteamericano Proctor, onde sua publicação, no ano de 1933, sobre aterros compactados mostrou que, para uma determinada energia de compactação, a massa específica do material compactado é função da umidade em que o solo estiver. Portanto, para uma determinada energia de compactação, existe um certo teor de umidade (umidade ótima) que retorna uma densidade seca máxima. Essa relação foi apresentada por Proctor através de uma curva de compactação do solo como a Figura 2.2.

2.1.1. Compactação em laboratório

No Brasil, o ensaio de Proctor foi inicialmente padronizado por meio do método brasileiro MB-33 (ABNT, 1984), denominado "Ensaio Normal de Compactação De Solos". Entretanto, os ensaios de compactação são padronizados, atualmente, pela Associação Brasileira de Normas Técnicas (ABNT), através da norma técnica NBR 7182/86 (ABNT, 1986) sendo denominado "Solo – Ensaio de Compactação" e pelo antigo Departamento Nacional de Estradas e Rodagens (DNER), hoje representado pelo Departamento Nacional de Infra-estrutura de Transportes (DNIT), por meio do método de ensaio DNER-ME 129/94 (DNER, 1994), sendo denominado "Solos - Compactação Utilizando Amostras não Trabalhadas".

Segundo Souza Pinto (2006), os solos argilosos, geralmente, apresentam densidades secas máximas baixas (1,4 - 1,5 g/cm³) e de umidades ótimas elevadas (25 - 30 %). Valores baixos de densidade seca máxima também são encontrados em solos siltosos, frequentemente com curvas de laboratório bem abatidas. As areias com pedregulhos, bem-graduadas e pouco argilosas apresentam densidades secas máximas elevadas (2 - 2,1 g/cm³) e de umidades ótimas baixas (9 - 10 %). Densidades secas máximas de 1,9 g/cm³ com umidades ótimas entre 12 e 13

%, são representativas de areias finas argilosas lateríticas, podendo apresentar a fração areia mal graduada.

2.1.2. Compactação de campo

Segundo Knappett e Craig (2014), os resultados obtidos em ensaios de compactação de solos em laboratório não são aplicáveis diretamente à compactação de solos no campo. Isto ocorre porque o modo como à energia de compactação é aplicada nos ensaios de laboratório é diferente da de campo produzida por equipamentos. Outro fator que influencia é o diâmetro dos grãos, pois nos ensaios de laboratório o diâmetro máximo dos grãos é de 4,8 ou 19 mm. Entretanto, as massas específicas aparentes secas máximas determinadas em ensaios de laboratório são adequadas com as produzidas pelo equipamento de compactação em campo.

De acordo com DNIT (2006), os princípios gerais que regem a compactação em laboratório são semelhantes aos de campo. Contudo, alguns fatores merecem ser destacados:

- A energia de compactação, geralmente, não apresenta uma igualdade entre as obtidas no campo e no laboratório, conduzindo a uma mesma densidade aparente seca máxima para um dado teor de umidade ótimo e isto se deve, principalmente, ás diferenças de confinamento do solo: no campo (camadas) e no laboratório (no interior de um cilindro);
- A compactação com os equipamentos no campo conduzem as linhas de parâmetros ótimos que se diferem que se diferem daquela obtida no laboratório.
- O solo compactado em laboratório possui uma estrutura diferente do solo compactado no campo.

Portanto, um solo compactado no campo pode apresentar diferenças nos seus parâmetros de resistência ao cisalhamento, permeabilidade e compressibilidade. Neste caso, cabe ao projetista de uma grande obra de terra definir se essas diferenças são significativas na segurança da mesma.

Para Massad (2010), grandes obras de terra, como são as barragens, costuma-se executar aterros pilotos, testando vários equipamentos e compactando solos com diferentes umidades, o qual permite obter curvas de peso específico seco em função do número de passadas. Além disso, amostras indeformadas são retiradas para ensaios de laboratório.

A Tabela 2.1 apresenta indicações de equipamentos de compactação no campo, porém deve-se verificar os parâmetros correspondentes aos equipamentos que sejam mais adequados em cada caso particular.

Tino	Solo	Modo de	Parâmetros dos equipamentos			
про		compactar	e (cm)	Ν	v (km/h)	p ou P
Rolo pé de Carneiro	Argila ou Silte	De baixo para cima	20 a 25	8 a 10	<i>≤</i> 4	2.000 a 3.000 (kPa)
Rolo pneumático	Silte, areia com finos	De cima para baixo	30 a 40	4 a 6	4 a 6	500 a 700 (kPa)
Rolo vibratório	Material granular	Vibração	60 a 100	2 a 4	≥ 8	50 a 100 (kN)

Tabela 2.1 - Equipamentos de compactação

Fonte: (Massad, 2010)

Onde:

- e espessura da camada de solo solto;
- N número de passadas do rolo compactador;
- v velocidade do rolo compactador;
- p-pressão na pata ou no pneu;
- P-peso do rolo vibratório.

Estruturas dos solos compactados

2.1.3. Estrutura de solos argilosos compactados

A estrutura do solo compactado depende da energia aplicada e da umidade que o solo foi compactado (Souza Pinto, 2006). A Figura 2.3 sintetiza o modelo estudado por Lambe (1958, a partir de Trindade et al., 2008) da estrutura de um solo argiloso compactado com energias diferentes. Quando a compactação ocorre no ramo seco da curva de compactação, representado pelo ponto A, a estrutura será floculada com baixo grau de orientação e densidade aparente seca máxima baixa. Esse tipo estrutura ocorre porque a umidade não é suficiente para desenvolvimento das duas camadas de íons em torno das partículas de argila. Com o aumento do teor de umidade, a dupla camada em torno das partículas se expande, o que reduz o grau de floculação do sistema e aumenta a repulsão entre as partículas de argila e, consequentemente,

um peso específico aparente seco máximo maior, como se observa no ponto B. Um aumento da umidade do ponto B para o C resulta em um grau mais alto de orientação devido ao aumento da repulsão entre as partículas. Observa-se também que o peso específico aparente seco máximo decresce, pois, com o aumento da água, a concentração dos sólidos diminui. Para um determinado teor de umidade no ramo seco, uma energia de compactação maior implica em uma maior orientação das partículas de argila, o que resulta em uma estrutura mais dispersa com pesos específicos maiores, como se observa comparando o ponto A com o ponto E. Entretanto, o ponto D, situado no ramo úmido da curva de compactação, possui um maior alinhamento entre as partículas de argila, mas não sem apresentar um acréscimo do peso específico aparente seco máximo.

Figura 2.3 - Efeito da compactação em estruturas de solos argilosos

Fonte: (conforme Lambe, 1958, a partir de Trindade et al., 2008)

2.1.4. Comportamento geotécnico dos solos coesivos compactados

A estrutura dos solos coesivos é alterada pela compactação. Entre os parâmetros que sofrem variação estão a condutividade hidráulica, compressibilidade e resistência ao cisalhamento do solo.

A Figura 2.4 apresenta dois gráficos que mostram a variação da permeabilidade, para uma mesma energia de compactação, com o aumento da umidade. Observa-se que há uma diminuição da permeabilidade no ramo seco e um pequeno aumento no ramo úmido. De acordo

com Lambe e Whitman (1969), a razão desse comportamento está associado com a estrutura que o solo fino apresenta quando compactado. No ramo seco, o mesmo apresenta uma estrutura floculada com grandes vazios entre si, facilitando a passagem de água. Para o ramo úmido, a estrutura apresenta uma maior orientação, o que diminui os vazios entre as partículas de argila, resultando que a permeabilidade a permeabilidade no teor de umidade ótimo ou no ramo úmido é menor do que no ramo seco.

Fonte: (Lambe e Whitman, 1969)

Os solos coesivos compactados no ramo seco da curva compactação sob baixa pressão são menos compressíveis que um solo compactado no ramo úmido, conforme é apresentado na Figura 2.5a. Entretanto, sob alta pressão a tendência é exatamente oposta, conforme mostra a Figura 2.5b. Lambe e Whitman (1969) citam que a razão desse comportamento está no fato que

amostras compactadas no ramo seco da curva de compactação tende a se orientar na direção normal à direção da aplicação da carga.

Figura 2.5 - Efeito da compactação sobre a compressibilidade unidimensional de solos argilosos

Fonte: (Lambe e Whitman, 1969)

Quanto à resistência ao cisalhamento de solos argilosos compactados, o seu valor decresce, geralmente, com o aumento do teor de umidade de moldagem, conforme mostra a Figura 2.6. Os solos compactados no ramo seco apresentam ruptura do tipo "frágil" e os demais apresentam ruptura "plástica".

Figura 2.6 –Efeito da compactação sobre a resistência ao cisalhamento de solos argilosos em função da umidade de moldagem

Fonte: (Adaptado de Lambe e Whitman, 1969)

Das (2007) descreve que duas amostras ao serem compactadas com o mesmo peso específico aparente seco, mas em ramos diferentes da curva de compactação, a amostra compactada no ramo seco apresentará maior resistência. A Figura 2.7 mostra esse comportamento.

Figura 2.7 - Efeito da compactação sobre a resistência de solos argilosos

Fonte: (Adaptado de Das, 2007)

2.2. Solos de comportamento colapsíveis

São solos não saturados que sofrem um rearranjo de partículas e uma redução significante do volume quando inundados sob tensões praticamente constantes. Esses solos com essas características ocorrem, geralmente, em locais com deficiência hídrica, onde o índice pluviométrico é baixo.

Jennings e Knight (1975) define o colapso como sendo o recalque adicional de uma fundação devido ao aumento do teor de umidade de um solo não saturado, e, geralmente, sem ocorrer aumento nas cargas aplicadas as fundações.

Para Ferreira (1995) o solo é colapsível quando são não saturados e sofrem uma significante redução de volume quando submetido a um aumento no grau de saturação, podendo ocorrer ou não a existência de um carregamento externo.

2.2.1. Estrutura dos solos colapsíveis

Uma característica inerente aos solos colapsíveis é o fato destes possuírem uma "estrutura aberta", apresentando algum material de ligação entre os grãos a qual é susceptível de ser quebrada ou reduzida pelo simples aumento do teor de umidade ((Barden et al., 1973; Popescu, 1986).

Alguns materiais de ligação são apresentados por Clemence e Finbarr (1981) na Figura 2.8. Esses modelos estruturais são comuns em vários solos colapsíveis, representando bem a maior parte da estrutura dos solos colapsíveis.

Fonte: (Clemmence e Finbarr, 1981)

Para o solo constituído de areia (Figura 2.8a e b), considera-se que o vínculo é mantido devido a forças capilares desenvolvidas entre os contatos areia-areia, silte-areia e silte-silte. Os demais modelos estruturais apresentados representam os vários arranjos possíveis quando a estabilidade estrutural é mantida por argila.

2.2.2. Comportamento de solos colapsíveis

Os solos não saturados, sejam eles naturais ou compactados, podem ter um comportamento colapsível devido à inundação de acordo com várias condições que foram agrupadas em três grupos por Barden et al. (1973), conforme apresentado abaixo:

- estrutura porosa (aberta), potencialmente instável (metaestáveis) e não saturada;
- valores elevados de sucção ou agentes cimentantes que estabilizam os contatos intergranulares, cujo enfraquecimento devido ao aumento do teor de umidade conduzirá ao colapso;
- tensão externa aplicada capaz de desenvolver uma condição metaestável

Essas condições para um comportamento colapsível do solo ocorrem, em geral, de forma combinada. Para umidades baixas e um carregamento externo atuando, a estrutura permanecerá sensivelmente inalterada e o material de ligação sofrerá pequeno esforço cisalhante. O aumento do teor de umidade resulta em um aumento do esforço cisalhante nos contados intergranulares levando a estrutura ao colapso.

Jennings e Knight (1975) tratam o colapso como sendo uma ruptura cisalhante no material de ligação entre os grãos. Para os autores o mecanismo do colapso ocorre quando o solo em seu estado de umidade natural recebe um carregamento e a estrutura permanece ligeiramente inalterada, mas o material de ligação comprime sensivelmente sem apresentar grandes movimentos relativos dos grãos do solo. Quando ocorre um aumento no teor de umidade do solo até exercer uma umidade crítica e o mesmo está sob carregamento, o material de ligação não resiste as forças de deformação e a estrutura colapsa.

2.2.3. Métodos de classificação e identificação de solos colapsíveis

As grandes obras geotécnicas, geralmente, podem estar localizadas sobre solos colapsíveis. Os danos provocados pelo colapso do solo, em geral, são bastante significativos, o qual compromete o desempenho do empreendimento. Para Coutinho e Severo (2009) uma investigação geotécnica adequada envolve a determinação da natureza e comportamento de todos os aspectos de uma determinada área estudada e suas condições ambientais que podem influenciar, ou ser influenciada, pelo projeto. Sendo assim, cada projeto e local é único e a investigação geotécnica deve responder as questões que irão surgir ao longo da construção e operação do empreendimento.

Os métodos de classificação que utilizam índices físicos, limites de consistência e parâmetros ligados à textura do solo para indicar a potencialidade ao colapso estrutural são os chamados métodos indiretos; os métodos diretos baseiam-se na medida do colapso do solo (Ferreira, 1995). A Tabela 2.2 apresenta alguns métodos em que se baseiam os critérios de classificação e identificação com as suas respectivas referências bibliográficas. Entretanto, apenas alguns métodos serão apresentados e discutidos nesta pesquisa.

Métodos	Sub-divisões	Base para definição do critério	Referêncais	
Indireto	Identificativos	Microscopia eletrônica de	Collins e Mcgown (1974), Wolle	
		varredura	et al. (1978)	
		Pedologia	Ferreira (1990) e Ferreira (1993)	
	Orientativos	Ensaios expeditos	Arman e Thornton (1972) e Jennings e Knight (1975)	
			Denisov (1951) ¹ , Priklonskij	
		,	(1952) ¹ , Gibbs e Bara (1962 e	
	Qualitativos	Indices físicos	1967), Feda (1966), Kassif e	
			Henkin (1967), Design of Small	
			Dams (1960 e 1974) ² , Código de	
	Quantativos		obras da URSS (1977)	
		Ensaios de Campo - Cone	Código de Obras URSS (1997) ³	
		Ensaios SPT-T	Décourt e Quaresma Filho (1994)	
Direto	Avaliativos	Ensaios edométricos	Reginatto e Ferrero (1973)	
		duplos		
	Quantitativas	Ensaios edométricos	Bally et al. (1973), Jennings e	
		simples	Knight (1975), Vargas (1978),	
	Quantitativos		Lutenegger e Saber (1988)	
		Ensaios de campo	Ferreira e Lacerda (1993)	

Tabela 2.2 - Métodos indiretos e diretos de identificação de solos colapsíveis

¹Citado por Feda (1966) - ²Bureau of Reclamation - ³Citado por Resnik (1989) Fonte: (Souza Neto, 2004)

2.2.3.1. Métodos indiretos

Alguns critérios de identificação de solos colapsíveis estão apresentados na Tabela 2.3. Dentre as propostas apresentadas, apenas Basma e Tuncer (1992) e Futai (2000) quantificam o potencial de colapso do solo.

Tabela 2.3 - Critérios de identificação de solos colapsíveis

REFERÊNCIA	EXPRESSÃO	LIMITES	
Denisov (1951) citado por Reginatto (1970)	$K = \frac{e_l}{e_o}$	0,5 <k<0,75 altamente<br="" –="">colapsível, K=1 – não colapsível e 1,5 < K < 2 não colapsível</k<0,75>	
Feda (1966)	$Kl = \frac{\left(\frac{W_o}{S_o}\right) - W_p}{W_l - W_p}$	O resultado expressa a colapsibilidade. S _o >80%. Kl > 0,85 são colapsíveis	
Código de obras da URSS (1962) citado por Reginatto (1970)	$\lambda = \frac{e_o - e_l}{1 + e_o}$	$\lambda \ge -0, 1 - o$ solo é colapsível	
Priklonskij (1952) citado por Feda (1966)	$Kd = \frac{w_l - w_o}{w_l - w_p}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Gibbs e Bara (1962)	$R = \frac{W_{sat}}{W_l}$	R > 1 - colapsível	
Kassif e Henkin (1967)	$K = \gamma_d.w$	K < 15 - colapsível	
	Cascalho fino	$\label{eq:scalar} \begin{array}{l} S_r < 6\% - colapsível \\ S_r > 10\% - não \ colapsível \end{array}$	
Jennings e Knight (1975)	Areia fina	$\label{eq:scalar} \begin{array}{l} S_r < 50\% - colapsível \\ S_r > 60\% - não \ colapsível \end{array}$	
	Silte argiloso	$\begin{array}{l} S_r < 90\% - colapsível \\ S_r > 95\% \ \text{-} não \ colapsível \end{array}$	
Código de obras da URSS (1977) citado por Reznik (1989)	$CI = \frac{e_o - e_l}{1 + e_o}$ $S_r < 80\%$	$\begin{array}{l} \text{Ocorre colapso para:} \\ 1\% \leq w_p \leq 10\%, \ CI < 0,1 \\ 10\% \leq w_p \leq 14\%, \ CI < 0,17 \\ 14\% \leq w_p \leq 22\%, \ CI < 0,24 \end{array}$	
	Teor de finos (<0,002 mm) < 16%	Alta probabilidade de colapso	
Handy (1973) citado por	16 a 24%	Provavelmente colapsível	
(1988)	24 a 32%	Probabilidade de colapso < 50%	
	> 32%	Geralmente não colapsível	
Basma e Tuncer (1992)	PC (%) = Equação 2.1 PC (%) = Equação 2.2	O resultado corresponde ao potencial de colapso. A classificação dependerá do critério adotado que se baseie em PC	
Futai (2000)	$\Delta \varepsilon_{cmáx}$ ou PC _{max.} = Equação 2.3	Critérios baseados em PC	

Fonte: (Souza Neto, 2004)

K – coeficiente de subsidência; Kl – índice de subsidência; w_0 – umidade natural; S_0 – grau de saturação natural; γ_d – peso específico seco; PC – potencial de colapso.

As Equações 2.1 e 2.2 propostas por Basma e Tuncer (1992) são expressões empíricas obtidas por regressão linear múltipla.

$$PC = 48,496 + 1,102C_u - 0,457w_o - 3,533\gamma_s + 2,85\ln(\sigma_{vi})$$
(2.1)

$$PC = 48,506 + 0,072(S-C) - 0,439wo - 3,123\gamma_s + 2,85\ln(\sigma_{vi})$$
(2.2)

Onde:

PC – potencial de colapso (%);

C_u – coeficiente de uniformidade;

 γ_s – peso específico seco do solo (kN/m³);

- σ_{vi} tensão vertical de inundação (kPa);
- (S-C) diferença entre os teores de areia e argila (diâmetro dos grãos < 0,002 mm).

A Equação 2.3 proposta por Futai (2000) expressa a deformação de colapso máxima.

$$\Delta \varepsilon_{c \max} = 4.2 \left[\frac{e\sqrt{Sr}}{A(1+IP)} \right]^{0.6}$$
(2.3)

Onde:

- $\Delta \varepsilon_{\rm cmax}$ potencial de colapso máximo;
- e índice de vazios natural;
- Sr grau de saturação (%);
- A teor de areia em valor absoluto;
- IP índice de plasticidade;
- 2.2.3.2. Métodos diretos

Ensaios edométricos (adensamento) simples ou duplos são realizados para determinar o potencial de colapso do solo. A escolha pelo tipo de ensaio edométrico (simples ou duplo) depende da metodologia utilizada para classificação.
Nos ensaios edométricos simples o solo é carregado por estágios, a inundação é feita em uma determinada tensão e as deformações continuam a ser medidas (Figura 2.9). Para este tipo metodologia de ensaio, Jennings e Knigth (1975) definiram o potencial de colapso (PC) pela Equação 2.4. A Tabela 2.4 apresenta a classificação dos autores de acordo com a gravidade dos danos em uma obra.

Figura 2.9 - Ensaio edométrico simples

$$C = \frac{\Delta e_0}{1+e} x \, 100 \tag{2.4}$$

Onde:

 σ_i – pressão de inundação = 200 kPa;

 Δe – variação do índice de vazios devido à inundação;

 $e_0 - indice de vazios inicial.$

Tabela 2.4 - Classificação da colapsibilidade nas obras de engenharia (Jennings e Knight, 1975)

PC (%)	Gravidade dos problemas
0 a 1	Sem problema
1 a 5	Problema moderado
5 a 10	Problemático
10 a 20	Problema grave
> 20	Problema muito grave

Para os ensaios edométricos duplos, a metodologia apresentada é a proposta por Reginatto e Ferrero (1973). Sendo assim, dois corpos de prova são moldados, um corpo de prova na umidade natural é submetido a um determinado carregamento e o outro corpo de prova é previamente inundado e submetido às mesmas condições de carregamento (Figura 2.10). A Equação 2.5 define o coeficiente de colapsibilidade (C) do solo.

Figura 2.10 - Ensaio edométrico duplo

Onde:

 σ_{vpa} – tensão de pré-adensamento do solo inundado;

 σ_{v0} – tensão total devido ao peso próprio do solo em campo;

 σ_{vpn} – tensão de pré-adensamento do solo na umidade natural.

Os solos são colapsíveis quando $\sigma_{vpn} > \sigma_{vpa}$. Para saber se há perigo de colapso da estrutura, comparam-se os valores de σ_{vo} , σ_{vpn} , σ_{vpa} com σ_v (tensão vertical aplicado ao solo). Sendo assim, temos os seguintes casos:

1) $\sigma_{vpa} < \sigma_{vo} e C < 0$ – solo verdadeiramente colapsível. Ao ser saturado, o solo colapsa sob peso próprio;

(2.5)

2) $\sigma_{vpa} > \sigma_{vo} e 0 < C < 1$ - solo condicionado ao colapso. A colapso dependerá do valor de σ_{v} ;

2.1) $\sigma_v < \sigma_{vpa} - n$ ão ocorre colapso com inundação do solo e máximo incremento para σ_v será $\sigma_{vpa} - \sigma_{v0}$;

2.2) $\sigma_{vpa} < \sigma_v < \sigma_{vpn}$ – com a inundação do solo, ocorrerá colapso;

2.3) $\sigma_v > \sigma_{vpn}$ – pode ocorrer colapso mesmo sem inundação do solo;

3) $\sigma_{vpn} = \sigma_{vpn} e C = 1 - não$ ocorre colapso com a inundação do solo. Geralmente, C é menor que 1, incluindo os solos não colapsíveis.

4) C = - ∞ e $\sigma_{vpn} = \sigma_{v0}$ - trata-se de solos não-cimentados, normalmente adensados.

3. CAPÍTULO 3 – CARACTERIZAÇÃO DA ÁREA ESTUDADA E METODOLOGIA DAS ATIVIDADES DE CAMPO E LABORATÓRIO

Neste capítulo, apresenta-se uma breve descrição das características da área de estudo e sua geologia. Apresenta-se, também, a metodologia utilizada na investigação de campo e nos ensaios de laboratório. As sondagens de simples reconhecimento foram realizadas de acordo com a NBR 6484/2001 (ABNT, 2001), a retirada das amostras indeformadas (bloco) e amolgadas seguiram as especificações da NBR 9604/86 (ABNT, 1986_b) e o ensaio de condutividade hidráulica "*in situ*" (permeâmetro guelph) foi executado de acordo com o manual do equipamento (Soilmoisture, 1991). Os ensaios de laboratório (ensaios de granulometria, limites de consistência, densidade real dos grãos, compactação, ensaios triaxiais drenados e não drenados e edométricos duplos) foram realizados no laboratório de solos e instrumentação da UFPE, conforme normas técnicas brasileiras da ABNT.

3.1. Área de estudo

O aterro em estudo nesta pesquisa está localizado na região metropolitana do Recife (RMR). Trata-se de um aterro de solos sedimentares da Formação Barreiras que apresenta altura máxima aproximadamente de 27,50 metros, podendo ter 3 ou 4 patamares e inclinação de 1:1,5.

O terreno natural tratava-se de uma encosta com cota aproximadamente de 72 metros; 8 metros do topo da encosta foram cortados e esse material foi utilizado para construção de dois aterros. Ressalta-se que o volume de corte foi suficiente para atender o volume de aterro.

Com o corte de 8 metros do terreno natural, criou-se uma área plana na cota de 64 metros. Sendo assim, executou-se dois aterros partindo da base do terreno natural até atingir a cota 64. A Figura 3.1 e 3.2 apresentam o modelo digital do terreno natural e do terreno após execução dos aterros.

Figura 3.1 - Modelo digital do terreno - topografia do terreno natural

Figura 3.2 - Modelo digital do terreno - topografia após conclusão dos aterros

3.1.1. Geologia

A área de interesse encontra-se inserida na unidade geológica Formação Barreiras – arenito grossos a conglometárico, intercalados por níveis conglomeráticos e camadas siltico-argilosas – pertencente à era cenozoica. A Formação Itamaracá - siltitos argilosos intercalados com arenitos médios a finos calcíferos e fosforitos – pertencente à era mesozoica encontra-se próxima a área de estudo. A fim de ratificar a unidade geológica presente no local em estudo, foi feito um reconhecimento da geologia com escala de detalhe na área estudada, o que permitiu confirmar que a unidade geológica presente é a Formação Barreiras. Tal fato foi comprovado por visitas de campo, onde ácido clorídrico (HCl) foi gotejado no solo (Figura 3.3) para comprovar a existência, ou não, de carbonato presente na Formação Itamaracá. O calcário é uma substância básica, ao entrar em contato com HCl vai haver uma efervescência e formação de um cloreto de cálcio e liberação de gás hidrogênio.

Figura 3.3 – Ácido clorídrico em contato com o solo

3.2. Investigação de campo

A área de estudo contempla dois aterros divididos em duas áreas: área A e área B. Entretanto, esses aterros foram compactados com o material da mesma jazida e no mesmo período. A localização do ensaio de permeabilidade, coleta de amostras indeformadas do tipo bloco e amostras amolgadas das janelas (poço de inspeção) e representação das áreas A e B estão apresentadas na Figura 3.4.

Figura 3.4 - Localização dos ensaios de permeabilidade, amostras indeformadas (bloco) e amostras amolgadas (saco) das janelas.

3.2.1. Sondagens de simples reconhecimento

Foram realizadas sondagens de simples reconhecimento com medidas de N_{SPT} a cada metro. Essas sondagens foram distribuídas no aterro e sua localização está apresentada na Figura 3.5. No total foram realizados 15 furos à percussão. As sondagens seguiram as especificações da NBR 6484/2001 (ABNT, 2001) para execução das sondagens de simples reconhecimento e a classificação do solo de acordo com sua compacidade ou consistência seguiu as especificações contidas na NBR 7250/82 (ABNT, 1982).

Figura 3.5 – Localização das sondagens à percussão

3.2.2. Coleta e extração de amostras de solo

Foram recolhidas 11 amostras indeformadas (bloco) e 11 amostras amolgadas representativas de material da Formação Barreiras. Essas amostras foram retiradas na encosta (terreno natural / jazida), na região de fronteira entre o aterro e o terreno natural e no aterro. Para a retirada das

amostras, seguiu-se a NBR 9604/86 (ABNT, 1986_b). Retiraram-se também amostras amolgadas das paredes das janelas (poço de inspeção) abertas no aterro; ao todo foram abertas 4 janelas.

As amostras amolgadas foram coletadas em quantidade variável em função do uso nos ensaios de laboratório e foram acondicionadas em sacos plásticos resistentes. Para identificação das mesmas, etiquetas foram aderidas aos sacos plásticos. Essas amostras amolgadas representativas foram retiradas nas trincheiras abertas na área de estudo para coletar amostra indeformada em bloco e em janelas abertas no aterro. As amostras permaneceram à sombra, em local ventilado, até o transporte para o laboratório.

As amostras indeformadas foram extraídas com o mínimo de perturbação, que se obtém procurando manter sua estrutura e condições de umidade e compacidade (ou consistência) natural.

Os blocos indeformados foram moldados em formato cúbico com 0,30 m de aresta. O mesmo foi inserido cuidadosamente centrado no interior de uma caixa de madeira fechada com parafuso. O espaço entre o bloco e caixa foi preenchido com solo para evitar choques mecânicos entre a amostra e a caixa. Nas faces da caixa foi marcada a posição do bloco em relação a sua posição no terreno; uma etiqueta foi colada no topo da caixa com os dizeres correspondentes aos da etiqueta colada no bloco. O transporte até o laboratório foi feito com o topo para cima, sempre procurando evitar impactos e/ou vibrações.

O bloco 1 foi retirado na data 07/08/2015, o mesmo ficou com 1,10 m de profundidade a partir do topo. O bloco 2 foi retirado na data 21/08/2015, com 1,70 m de profundidade a partir do topo. Os dois blocos foram retiradas no terreno natural (área de corte / jazida). A Figura 3.6 ilustra essa atividade de campo.

Figura 3.6 - (a) Bloco 1 (b) bloco 2

O bloco 3 foi retirado na data 15/10/2015 a uma profundidade de 1,70 m a partir do topo e localiza-se na região de fronteira entre o aterro e o terreno natural, conforme é apresentado na Figura 3.7. Esse bloco representa a região de fronteira da área B. Não foi recolhido material para estudo no laboratório da região de fronteira da área A, porém espera-se um comportamento semelhante, pois a metodologia para "encaixar" o aterro no terreno natural foi a mesma.

Figura 3.7 - Bloco 3 - região de fronteira entre o terreno natural e o aterro

Os blocos 4 e 5 foram retirados na data 20/10/2015 a uma profundidade de 1,10 m a partir do topo e estão localizados de modo a representar uma seção para o aterro da área A. A Figura 3.8

mostra os locais das escavações realizadas no talude de aterro para retirada desses blocos. Os blocos 6 e 7 foram retirados na data 21/10/2015 e estão localizados de modo a representar uma segunda seção para o aterro da área A. O bloco 6 ficou com 1,4 m de profundidade a partir do topo e o bloco 7 com 1,50 m de profundidade também a partir do topo. A Figura 3.9 mostra os locais das escavações realizadas no talude de aterro para retirada dos mesmos.

Figura 3.8 - (a) Bloco 4 (b) bloco 5

Figura 3.9 - Vista frontal dos blocos 6 e 7

Os blocos 8 e 9 foram retirados na data 22/10/2015 e estão localizados de modo a representar uma seção para o aterro da área B. O bloco 8 foi retirado a 2,35 m de profundidade a partir do

topo e o bloco 9 ficou com 1,60 m de profundidade a partir do topo. A Figura 3.10 ilustra a localização dos blocos 8 e 9. Os blocos 10 e 11 foram retirados na data 23/10/2015 e estão localizados de modo a representar uma segunda seção para o aterro da área B. O bloco 10 foi coletado a 2,40 m de profundidade a partir do topo e o bloco 11 a 2,20 m de profundidade a partir do topo. A Figura 3.11 mostra os locais das escavações realizadas nos taludes de aterro para retirada dos blocos 10 e 11.

Figura 3.11 - (a) Bloco 10 (b) bloco 11

A Tabela 3.1 apresenta uma síntese da localização, profundidade e data de retirada dos blocos apresentados acima.

Bloco	Profundidade a partir do topo (m)	Localização	Data
Bloco 1	1,1	Terreno Natural / Jazida	07/08/2015
Bloco 2	1,7	Terreno Natural / Jazida	21/08/2015
Bloco 3	1,7	Fronteira: Terreno Natural-Aterro	15/10/2015
Bloco 4	1,1	Aterro – Área A	20/10/2015
Bloco 5	1,1	Aterro – Área A	20/10/2015
Bloco 6	1,4	Aterro – Área A	21/10/2015
Bloco 7	1,5	Aterro – Área A	21/10/2015
Bloco 8	2,35	Aterro – Área B	22/10/2015
Bloco 9	1,6	Aterro – Área B	22/10/2015
Bloco 10	2,4	Aterro – Área B	23/10/2015
Bloco 11	2,2	Aterro – Área B	23/10/2015

Tabela 3.1 - Resumo da distribuição dos blocos na área de estudo

3.2.3. Condutividade hidráulica

Para determinação da condutividade hidráulica "in situ", foi utilizado o permeâmetro Guelph (Soilmoisture,1991). O equipamento de carga constante permite realizar ensaio pontual para obtenção da condutividade hidráulica saturada. Este ensaio fornece diretamente a permeabilidade (K_{fs}) e o potencial mátrico de fluxo (ϕ_m) do solo.

A metodologia adotada no presente trabalho para o cálculo dos parâmetros K_{fs} e ϕ_m seguiu o procedimento padronizado constante no manual do usuário do Permeâmetro Guelph (Soilmoisture,1991).

O Permeâmetro Guelph consiste de um dispositivo desenvolvido no Canadá, na Universidade de Guelph, para execução de ensaio de infiltração de campo a carga constante. É empregado em sua utilização o princípio de Mariotte para estabelecer o equilíbrio da carga d'água aplicada durante o ensaio (Figura 3.12). De acordo com o princípio de Mariotte, a soma da pressão reduzida (vácuo) no ar P1 existente acima da água do reservatório do equipamento, junto com a pressão da coluna de água P2 existente entre a superfície da água no furo do ensaio e a superfície da água do reservatório, sempre iguala-se a pressão atmosférica P3.

Figura 3.12 - Princípio de Mariotte empregado no furo do ensaio "guelph"

Fonte: (Adaptado de Soilmoisture,1991)

A Figura 3.13 ilustra o princípio de funcionamento do equipamento, que é composto basicamente de um reservatório que fornecerá o suprimento de água, para manter o nível constante. O reservatório pode ser dividido em duas partes:

 reservatório interno graduado, que possibilita leituras do fluxo de água e é utilizado em solos de baixa permeabilidade;

2) reservatório externo, utilizado em combinação com o reservatório interno, quando o solo possui de moderada a alta permeabilidade. A escolha de um dos reservatórios dependerá da permeabilidade do solo.

A vazão é monitorada pela variação no nível d'água dentro do tubo do reservatório interno. Uma vez que o fluxo alcance a condição de regime permanente (quando a variação de altura no nível d'água, em três leituras consecutivas, permanecer constante), a permeabilidade saturada (K_{fs}) e o potencial mátrico (ϕ_m) podem ser calculados por equações pré-estabelecidas em função de valores definidos da relação entre a altura do nível d'água dentro do furo (H) e o raio do furo (a), do tipo do reservatório e dos valores do fluxo infiltrado a partir do índice de rebaixamento d'água no reservatório.

Figura 3.13 - Esquema do permeâmetro guelph

Fonte: (Adaptado de Soilmoisture, 1991)

Este ensaio também compreende a verificação das umidades inicial e final do solo. A medição da umidade inicial foi realizada com o solo retirado junto ao trado após a escavação até a profundidade pretendida para o ensaio. Já a umidade final (saturada) foi verificada retirando-se o solo após a realização do ensaio e retirada do permeâmetro. Observa-se que a umidade inicial e final é determinada para todos os pontos de ensaio na mesma vertical.

A avaliação da condutividade hidráulica não saturada foi realizada em 7 verticais distribuídas na área de estudo, com profundidade máxima de 4 metros devido as limitações do equipamento utilizado. A cada metro (1 m, 2 m, 3 m e 4 m) da vertical em execução foi realizado um ensaio para obtenção de K_{fs} e ϕ_{m} , totalizando 4 ensaios por vertical em cada furo, exceto no furo 7, pois devido a interferência de camada resistente no primeiro metro; o ensaio iniciou a partir de

2m. Na área de aterro foram realizados 5 verticais (G1, G2, G3, G5 e G6) e no terreno natural foram realizadas 2 verticais (G4 e G7). A Figura 3.14 ilustra a realização dos ensaios nos locais representados na Figura 3.4.

Figura 3.14 – Ensaio com permeâmetro guelph

3.3. Campanha de laboratório

Os ensaios de laboratório foram realizados no laboratório de solos e instrumentação da UFPE, conforme normas técnicas brasileiras da ABNT. Na campanha de laboratório foram realizados ensaios de granulometria, limites de consistência, densidade real dos grãos, compactação, ensaios triaxiais drenados e não drenados e ensaios edométricos duplos.

3.3.1. Ensaios de caracterização física

3.3.1.1. Análise granulométrica

A parte sólida dos solos é composta por um grande número de partículas que possuem diferentes dimensões. Tais frações constituintes dos solos, de acordo com a escala granulométrica brasileira NBR 6502/95 (ABNT, 1995), estão apresentados na Tabela 3.2:

Classificação	Diâmetro dos Grãos
Argila	Menor que 0,002 mm
Silte	Entre 0,06 e 0,002 mm
Areia	Entre 2,00 e 0,060 mm
Pedregulho	Entre 60,00 e 2,00 mm

Tabela 3.2 - Classificação dos grãos constituintes do solo

A composição granulométrica separa as partes sólidas do solo em frações e, assim, determinase a curva granulométrica do solo. A fração grossa do solo foi obtida através do processo de peneiramento, enquanto que a fração fina foi determinada através da sedimentação dos sólidos no meio líquido, conforme recomendações da NBR 7181/84 (ABNT, 1984_b). A preparação da amostra foi realizada de acordo com os procedimentos descritos na NBR 6457/84 (ABNT, 1984_c).

A fração fina do solo foi determinada a partir de dois procedimentos: o primeiro consistiu em realizar a sedimentação em meio líquido com a adição de defloculante (hexametafosfato de sódio) ao líquido; o segundo f\oi realizado sem a adição do defloculante.

3.3.1.2. Limites de consistência

O solo, de acordo com o teor de umidade, pode ter o seu comportamento divido em quatro estados, conforme Figura 3.15.

Figura 3.15- Limites de consistência

A realização dos ensaios de limite de liquidez e limite de plasticidade seguiram os procedimentos da NBR 6459/84 (ABNT, 84c) e NBR 7180/84 (ABNT, 1984d), respectivamente.

3.3.1.3. Compactação

Os ensaios de compactação foram realizados conforme especificações contidas na NBR 7182 (ABNT, 1986). As amostras foram previamente secas ao ar e repartidas (quarteadas). Foi adotada a energia de referência do ensaio Proctor Normal.

Após a extração do corpo de prova do cilindro de compactação, o mesmo foi seccionado para obter três partes aproximadamente iguais. A umidade foi determinada a partir de amostras coletadas da fatia central do corpo de prova. De posse do peso úmido e umidade calculou-se o peso específico aparente seco do solo. Este procedimento foi repetido até obter cinco pares de valores de peso específico aparente seco e de umidade. A curva de compactação foi traçada a partir desses cinco pares de valores e determinou-se a umidade ótima e o peso específico aparente seco máximo.

Esses ensaios de compactação foram realizados em todas as amostras amolgadas dos locais onde foram retirados os blocos e nas amostras amolgadas recolhidas das janelas abertas no aterro.

3.3.2. Ensaio edométrico duplo

Os ensaios edométricos duplos foram realizados de modo a avaliar a compressibilidade do material e verificação do potencial de colapso. A Tabela 3.3 apresenta a relação de amostras para o ensaio em questão.

Foram utilizadas células convencionais tipo Bishop e prensas de adensamento fabricadas pela Ronald Top S.A, com sistema de cargas através de pesos em pendural e relação de braço 1:10 na realização dos ensaios edométricos duplos. As deformações foram medidas através de extensômetros.

As amostras amolgadas coletadas nas janelas foram compactadas na energia Proctor Normal na umidade ótima conhecida nos ensaios de compactação, sendo um corpo de prova ensaiado na umidade ótima e o outro na condição inundada.

Para as amostras indeformadas moldadas dos blocos, os corpos de prova foram ensaiados na condição de umidade natural e na condição inundada.

Nos ensaios realizados na condição inundada, a inundação do corpo de prova foi realizada pela parte inferior da célula com água destilada por um período mínimo de 24 horas, com o objetivo de ser mantida a condição de saturação durante todo período do ensaio.

Amostra	Localização	Condição de umidade do corpo de prova	Nº de Ensaios
Dlaga 1	Terreno Natural /	Natural	1
B1000 1	Jazida	Inundado	1
Place 2	Terreno Natural /	Natural	1
BI0C0 2	Jazida	NaturalNaturaldaInundadoVatural /NaturaldaInundadoTerrenoNatural/ JazidaInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadorroInundadoNaturalNaturalrroInundadoNaturalNaturalrroNaturalNaturalNaturalrroNaturalNaturalNaturalrroNaturalNaturalNaturalrroNaturalNaturalNatural	1
Place 3	Fronteira: Terreno	Natural	1
DI0C0 3	Natural / Jazida	Inundado	1
Place /	Atorro	Natural	1
DI0C0 4	Ateno	Inundado	1
Place 5	Atorro	Natural	1
BI0C0 5	Ateno	Inundado	1
Place 6	Atorro	Natural	1
DIOCO U	Ateno	Inundado	1
Bloco 7	Aterro	Natural	1
		Inundado	1
Bloco 8	Aterro	Natural	1
Bloco 8		Inundado	1
Place 0	Atorro	Natural	1
DI0C0 9	Ateno	Inundado	1
Place 10	Atorro	Natural	1
BI0C0 10	Ateno	Inundado	1
Place 11	Atorro	Natural	1
Bloco 11	Ateno	Inundado	1
Janela 1 ECAS	Atomo	Ótima	1
139 0,60 a 0,80 m	Ateno	Inundado	1
Janela 2 ECAS	Atomo	Ótima	1
142 0,40 a 0,60 m	Aterio	Inundado	1
Janela 2 ECAS	Atomo	Ótima	1
145 0,80 a 1,00 m	Ateno	Inundado	1
Janela 3 ECAS	Atorro	Ótima	1
165 0,80 a 1,00 m Aterro		Inundado	1

Tabela 3.3 - Resumo dos ensaios edométricos realizados

3.3.3. Ensaios Triaxiais

O ensaio triaxial corrente foi realizado para caracterizar a resistência ao cisalhamento do solo. Com uso de amostra cilíndrica com altura de 0,10 m e diâmetro de 0,05 m, o corpo de prova foi isolado por membrana impermeável e a aplicação de tensões radiais no mesmo ocorreu através da água, elevando a pressão dentro da câmara, o ensaio foi conduzido sob deformação axial controlada e a força vertical foi medida através de célula de carga submersível.

As tensões principais (radial e axial) aplicadas neste tipo ensaio ocorrem de tal maneira que impedem a rotação destas durante o cisalhamento. O equipamento permite, também, controlar as tensões e deformações (axial e radial) de forma independentes e executar o ensaio em condições drenadas ou não drenadas.

As amostras amolgadas coletadas nas janelas foram compactadas na energia Proctor Normal na umidade ótima conhecida nos ensaios de compactação. Os ensaios realizados nessas amostras foram do tipo CIU-C (consolidado isotrópico não drenado – compressão).

Posteriormente, optou-se por realizar todos os demais ensaios triaxiais do tipo CID-C (consolidado isotrópico drenado – compressão). Entretanto, não havia mais amostras das janelas para se repetir os ensaios sob tal condição. Porém, não se espera grandes variações nos parâmetros dos solos encontrados nessas duas condições de ensaio.

Os corpos de prova moldados a partir dos blocos indeformados coletados na área de estudo foram moldados na condição de umidade natural. Nesses casos os ensaios foram do tipo CID-C.

O bloco 4 e o bloco 11 também tiveram suas amostras amolgadas compactadas na umidade ótima e ensaiadas no triaxial (CID-C). Foi feita essa escolha porque nenhuma das amostras compactadas das janelas foram classificadas como sendo do tipo CL. Então, optou-se por ensaiar essas amostras compactadas para um adequado comparativo entre a compactação em campo e a compactação em laboratório.

A percolação de água pela amostra foi feita da base para o topo com o objetivo de expulsar o ar presente no corpo de prova e preencher esses vazios com água. A percolação ocorria durante um tempo mínimo de 24 horas.

Após a fase de percolação (amostra saturada), conectavam-se as mangueiras na célula triaxial. Então, as amostras eram adensadas até a estabilização da leitura do medidor volumétrico.

4. CAPÍTULO 4 – APRESENTAÇÃO DOS RESULTADOS

Neste capítulo, apresentam-se os resultados obtidos na investigação de campo (sondagens de simples reconhecimento e condutividade hidráulica) e na campanha de ensaios de laboratório (análise granulométrica, densidade real dos grãos, limites de consistência, compactação, ensaios triaxiais drenados e não drenados e edométricos duplos).

4.1. Investigação de campo

4.1.1. Sondagem de simples reconhecimento

Os furos de sondagens foram distribuídos de tal forma a contemplar toda área do aterro. Foram realizados 15 (quinze) furos de sondagens nos aterros (após a conclusão da terraplenagem). O Anexo A mostra as variações de N_{SPT} com a profundidade. Está representado no gráfico de perfil de sondagem o contato estimado entre o aterro e o terreno natural para cada sondagem, com base na topografia antes da implantação do aterro e após a implantação do aterro. Nos perfis de sondagens SP-08, SP-09 e SP-10 não foram representados os contatos aterro-terreno natural pela falta de localização precisa das sondagens. Ressalta-se que o nível de água não foi encontrado em nenhuma das sondagens realizadas.

Representa-se nas Figura 4.1 a 4.4 quatro perfis geotécnicos típicos do aterro, sendo dois perfis para área A e dois para área B, cujo essas áreas estão representadas na Figura 3.4.

Figura 4.1 - Perfil geotécnico típico da área A – seção 1

Figura 4.2 - Perfil geotécnico típico da área A – seção 2

Figura 4.4 - Perfil geotécnico típico da área B – seção 4

Os valores de N_{SPT} nos trechos das sondagens correspondentes aos aterros variaram entre 2 e 15, aumentando a partir do contato com o terreno natural (base do aterro). Muito frequentemente foram observados segmentos de 4 a 5 metros com N_{SPT} baixos (<10) para o que se espera de um aterro bem compactado.

A sondagem SP-02 foi realizada com circulação de água e a sondagem SP-02A sem circulação. A comparação dos resultados das duas sondagens mostra que para o solo em análise o procedimento de circulação de água não parece afetar os resultados de N_{SPT}. Em função disso a perfuração com a circulação de água continuou sendo adotada nas demais sondagens.

Os valores de N_{SPT} da sondagem 11 (SP-11), localizada na área A, apresentam valores menores ou igual a 10 em quase todo perfil até 21 metros (exceto 17 metros - $N_{SPT} = 11$). O trecho entre 6 e 7 metros apresentou perda de lama bentonítica na razão de 80 L/m. No trecho entre 25 e 26 metros onde se localiza o contato estimado o N_{SPT} variou de 12 a 33, aumentando o valor com a profundidade até o limite da sondagem.

4.1.2. Condutividade hidráulica

Nas Tabela 4.1 e 4.2 estão sumarizados todos os resultados obtidos através dos ensaios "guelph". Representam-se nas Figura 4.5 a 4.11 os gráficos desses resultados, os quais mostram a variação da permeabilidade com a profundidade. Nestas figuras também se encontram os resultados com indicação da condutividade hidráulica através do potencial mátrico de fluxo do solo e as umidades de realização dos ensaios.

G1 - Vertical 1 - Aterro				
Profundidade (m)	K_{fs} (m/s) x 10 ⁻⁸	$\phi_{\rm m} ({\rm m^{2}/s}) \ge 10^{-11}$	Winicial	Wfinal
1	4,25	5,90	14,08	27,01
2	2,61	3,63	19,11	30,10
3	1,70	2,36	14,02	22,77
4	1,73	2,41	12,12	26,01
	G2 - Vertical 2 - A	Aterro		
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁷	$\phi_{\rm m} ({ m m}^2/{ m s}) \ge 10^{-11}$	Winicial	Wfinal
1	4,25	5,9	13,45	26,31
2	2,12	2,95	13,26	27,38
3	0,39	0,54	15,04	24,31
4	0,26	0,35	12,60	25,96
	G3 - Vertical 3 - A	Aterro		
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁸	$\phi_{\rm m} ({\rm m}^2/{\rm s}) \ge 10^{-11}$	Winicial	Wfinal
1	3,92	5,44	21,64	24,57
2	4,57	6,35	15,96	24,07
3	4,25	5,90	14,10	26,80
4	2,35	3,27	9,91	24,58
	G5 - Vertical 5 - A	Aterro		
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁸	$\phi_{\rm m} ({\rm m}^2/{\rm s}) \ge 10^{-11}$	Winicial	Wfinal
1	2,28	3,17	13,13	27,46
2	2,61	3,63	12,16	22,91
3	2,09	2,90	13,26	24,34
4	3,11	4,31	12,81	22,30
G6 - Vertical 6 - Aterro				
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁸	$\phi_{m} (m^{2}/s) \ge 10^{-11}$	Winicial	Wfinal
1	4,25	5,90	11,76	22,81
2	6,37	8,85	12,81	24,36
3	5,23	7,27	13,50	21,21
4	5,96	8,27	19,38	26,58

 $Tabela \ 4.1 - Aterro: \ valores \ da \ permeabilidade \ (K_{fs}), \ potencial \ mátrico \ de \ fluxo \ do \ solo \ (\phi_m), \ umidade \ inicial \ e \ final$

G4 - Vertical 4 – Terreno Natural				
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁷	$\phi_{\rm m} ({\rm m}^2/{\rm s}) \ge 10^{-10}$	Winicial	Wfinal
1	1,99	2,76	14,04	23,21
2	5,40	7,50	13,57	22,94
3	6,70	9,31	11,09	21,81
4	0,85	1,18	19,38	26,58
G 7 - Vertical 7 – Terreno Natural				
Profundidade (m)	K _{fs} (m/s) x 10 ⁻⁶	$\phi_{\rm m} ({\rm m}^2/{\rm s}) \ge 10^{-9}$	Winicial	Wfinal
1	-	-	-	-
2	0,61	0,85	13,29	14,71
3	0,14	0,19	11,91	20,83
4	2,62	3,64	3,64	23,65

Tabela 4.2 – Terreno natural: valores da permeabilidade (K_{fs}), potencial mátrico de fluxo do solo (ϕ_m), umidade inicial e final

Figura 4.6 - Aterro: resultados do ensaio "Guelph" da vertical 2. Permeabilidade (K_{fs}), potencial mátrico de fluxo (ϕ_m), umidade inicial e final

Figura 4.7 - Aterro: resultados do ensaio "Guelph" da vertical 3. Permeabilidade (K_{fs}), potencial mátrico de fluxo (ϕ_m), umidade inicial e final

Figura 4.8 - Aterro: resultados do ensaio "Guelph" da vertical 5. Permeabilidade (K_{fs}), potencial mátrico de fluxo (ϕ_m), umidade inicial e final

Figura 4.9 - Aterro: resultados do ensaio "Guelph" da vertical 6. Permeabilidade (K_{fs}), potencial mátrico de fluxo (ϕ_m), umidade inicial e final

 $\label{eq:general} Figura~4.10-Terreno natural: resultados do ensaio "Guelph" da vertical 4. Permeabilidade (K_{fs}), potencial mátrico de fluxo (\phi_m), umidade inicial e final$

Figura 4.11 - Terreno natural: resultados do ensaio "Guelph" da vertical 7. Permeabilidade (K_{fs}), potencial mátrico de fluxo (ϕ_m), umidade inicial e final

Coutinho e Severo (2009) citam que solos da Formação Barreiras em seu estado natural variam quanto ao coeficiente de permeabilidade saturado na ordem de 10⁻⁵ a 10⁻⁷ m/s. Essa variação de resultado depende dos teores de materiais finos presentes.

A Tabela 4.3 apresenta alguns resultados de ensaio guelph e triflex II para solos da Formação. O estudo atual mostra-se coerente com outros resultados obtidos.

Defenêncie / Lecol	Permeabilidade saturada (m/s)		Tino do onceio	
Referencia / Local	"in situ"	Laboratório	1 ipo de ensalo	
Estudo atual (Terreno natural)	8,5 x 10 ⁻⁸ a 2,62 x 10 ⁻⁶	-	Guelph	
Estudo atual (Aterro)	6,37 x 10 ⁻⁸ a 4,25 x 10 ⁻⁷	-	Guelph	
Souza (2014) Camaragibe-PE	5,75 x 10 ⁻⁷ a 1,62 x 10 ⁻⁶	3,32 a 5,10 x 10 ⁻⁶	Guelph e Triflex	
Magalhães (2013) Camaragibe-PE	-	537 a 9,22 x 10 ⁻⁷	Triflex	
Guedes (2013) Cabo de Santo Agostinho	-	6,45 x 10 ⁻⁶	Triflex	
Meira (2008) Recife-PE	1,3 x 10 ⁻⁵ a 9,1 x 10 ⁻⁷	1,0 x 10 ⁻⁵ a 6,4 x 10 ⁻⁷	Guelph e Triflex	
Silva (2007) Camaragibe-PE	1,25 7,3 x 10 ⁻⁶	1,22 4,84 x 10 ⁻⁶	Guelph e Triflex	
Severo et al. (2006) Tibau do Sul-RN	1,75 x 10 ⁻⁶ a 6,6 x 10 ⁻⁸	6,5 x 10 ⁻⁵ a 1,5 x 10 ⁻⁸	Ensaio de infiltração e Permeâmetro	
Silva et al. (2005) Camaragibe-PE	1,2 x 10 ⁻⁶ a 6,6 x 10 ⁻⁷	1,2 x 10 ⁻⁶ a 4,8 x 10 ⁻⁷	Guelph e Triflex	
Lafayette et al. (2005) Cabo-PE	4,03 a 8,94 x 10 ⁻⁶	-	Guelph	
Lima (2002) Recife-PE	2,26 a 5,5 x10		Guelph	
Lafayette (2000) Recife-PE	2,5 x 10 ⁻⁵	7,6 x 10 ⁻⁵	Guelph e Triflex	
Coutinho et al. (1999) Recife-PE	4,78 x 10 ⁻⁵	-	Guelph	

Tabela 4.3 – Permeabilidade de solos da Formação Barreiras (Atualizada a partir de Coutinho e Severo, 2009)

4.1.3. Informações complementares de compactação em campo

Foram analisados os dados do controle de compactação dos aterros em termos de grau de compactação (GC = $(\rho_{d,campo}/\rho_{d,máx})x100$) e desvio de umidade ($\Delta w = w_{campo}-w_{ot}$), onde: $\rho_{d,campo}$ é a massa específica seca da camada no campo; $\rho_{d,máx}$ é a massa específica seca máxima obtida no ensaio de compactação; w_{campo} é o teor de umidade de campo na camada compactada e w_{ot} é o teor de umidade ótimo. É importante ressaltar que essas informações foram obtidas através de relatórios feitos durante a execução da compactação e seu controle.

Os valores relatados apresentam sempre grau de compactação superiores a 95%. Por outro lado foram observados valores de desvio de umidade de até 5% (acima do teor de umidade ótimo). Embora não tenha sido informado qual o critério utilizado para a aceitação das camadas

compactadas, observa-se a tendência de alguns setores do aterro terem sido compactados do lado úmido.

Não está clara nos documentos apresentados a metodologia utilizada no controle de compactação no que diz respeito aos valores de referência de laboratório ($\rho_{d,máx}$ e $w_{ót}$). Os relatórios apresentam algumas curvas de compactação, no entanto, no cálculo do grau de compactação foram usados valores de referência que não são os das curvas apresentadas.

Tomando-se como base os valores dos estudos das áreas de corte / terreno natural (que forneceram material para os aterros) e os resultados dos ensaios de compactação que constam dos relatórios de controle, obteve-se a distribuição de frequência mostrada na Figura 4.12. O valor médio de $\rho_{d,máx}$ foi de 1,806 g/cm³ e desvio padrão de 0,073 g/cm³. Nas Figura 4.13 a 4.17 apresentam-se as distribuições de frequência dos valores de $\rho_{d,campo}$ obtidos nos meses de janeiro, fevereiro, março, abril de 2013 e os quatro meses juntos, respectivamente.

Fonte: Coutinho (2015)

Figura 4.13 - Frequência - massa espefícica "in situ" - Janeiro/13

Fonte: Coutinho (2015)

Figura 4.14 - Frequência - massa específica "in situ" - Fevereiro/13

Fonte: Coutinho (2015)

Figura 4.15 - Frequência - massa específica "in situ" - Março/13

Fonte: Coutinho (2015)

Fonte: Coutinho (2015)

Figura 4.17 - Frequência - massa específica "in situ" - Janeiro a Abril/13

A análise da Figura 4.13 mostra que há dois picos de maior frequência, um no intervado de massa específica seca de 1,61 a 1,65 g/cm³ e outro no intervalo de 1,81 a 1,85 g/cm³. Este último coincide com o intervalo de maior frequência obtido nos ensaios de laboratório, mostrado na Figura 4.12. De acordo com essa distribuição é como se tivessem sido utilizados pelo menos dois materiais distintos, com valores de massa específica seca máxima diferentes. No mês de fevereiro observa-se a mesma tendência, com predominância do intervalo de menor massa específica (1,61 a 1,65 g/cm3).

No mês de março e abril observa-se a tendência de um pico de maior frequência para cada mês. Um pico encontra-se no intervalo de 1,81 a 1,85 g/cm³ e outro no intervalo de 1,86 a 1,90 g/cm³, para os meses de março e abril, respectivamente.

Quando os dados dos quatro meses são representados conjuntamente (Figura 4.17), verifica-se a presença clara dos dois picos de frequência descritos na Figura 4.13.

As Figura 4.18 e 4.19 mostram as frequências de teor de umidade de laboratório (teor de umidade ótimo) e de campo (obtidos no controle de compactação), respectivamente. Observase uma grande dispersão nos valores de teor de umidade ótimo e no campo observam-se dois picos de frequência, de forma similar ao verificado nos valores de massa específica seca "in situ".

Fonte: Coutinho (2015)

Figura 4.18 - Frequência - teor de umidade ótimo - laboratório

Fonte: Coutinho (2015)

Figura 4.19 - Frequência - teor de umidade - campo

Fonte: Coutinho (2015)

4.2. Campanha de laboratório

É importante ressaltar que os índices e parâmetros aqui apresentados, na verdade, são referentes as condições atuais do aterro e da localização da amostra.

4.2.1. Análise granulométrica

Na Tabela 4.4 estão sumarizados os resultados obtidos no ensaio de granulometria e limite de consistência realizados nas amostras amolgadas dos blocos. Os mesmos resultados obtidos para as amostras amolgadas coletadas nas janelas abertas no aterro estão apresentados na Tabela 4.5.

Apresentam-se nas Figura 4.20 a 4.22 as curvas granulométricas típicas dos materiais de acordo com a classificação do solo apresentada na Tabela 4.4 e 4.5. A Figura 4.23 exibe a carta de plasticidade com os pontos dos materiais estudados.

Figura 4.20 - Curva granulométrica típica do solo SM - Bloco 1

Amostra	Prof. (m)	Localização	Pedreg. (%)	Areia Grossa (%)	Areia Média (%)	Areia Fina (%)	Silte (%)	Argila (%)	Densidade Real (g/cm ³)	LL (%)	LP (%)	IP (%)	SUCS
Bloco 1	1,10	Terreno natural / Jazida	2,0	8,0	22,0	20,0	20,0	28,0	2,670	33,2	26,6	6,6	SM
Bloco 2	1,70	Terreno natural / Jazida	16,0	7,0	19,0	15,0	14,0	29,0	2,656	32,5	24,9	7,6	SM
Bloco 3	1,70	Fronteira: Terreno natural / Aterro	1,0	14,0	20,0	12,0	29,0	24,0	2,656	31,8	22,9	8,9	CL
Bloco 4	1,10	Aterro	1,0	15,0	23,0	13,0	14,0	34,0	2,659	32,0	19,1	12,9	CL
Bloco 5	1,10	Aterro	1,0	6,0	28,0	16,0	13,0	36,0	2,667	41,3	22,6	18,7	SC
Bloco 6	1,40	Aterro	1,0	14,0	24,0	25,0	8,0	28,0	2,659	22,6	18,3	4,3	SC
Bloco 7	1,50	Aterro	1,0	7,0	22,0	18,0	12,0	40,0	2,659	34,6	21,0	13,6	CL
Bloco 8	2,35	Aterro	8,0	8,0	19,0	24,0	16,0	25,0	2,642	29,0	19,0	10,0	SC
Bloco 9	1,6	Aterro	1,0	12,0	20,0	23,0	10,0	34,0	2,652	30,3	17,6	12,6	SC
Bloco 10	2,4	Aterro	2,0	8,0	20,0	20,0	10,0	40,0	2,659	30,5	20,1	10,4	CL
Bloco 11	2,20	Aterro	1,0	7,0	22,0	17,0	21,0	32,0	2,638	37,0	18,8	18,3	CL

Tabela 4.4 - Composição granulométrica do solo, limite de consistência e classificação do solo - Bloco

Tabela 4.5 - Composição granulométrica do solo, limite de consistência e classificação do solo - Janela

Amostra	Prof. (m)	Localização	Pedreg. (%)	Areia Grossa (%)	Areia Média (%)	Areia Fina (%)	Silte (%)	Argila (%)	Densidade Real (g/cm ³)	LL (%)	LP (%)	IP (%)	SUCS
Janela 1	0,60 a	Atorro	1.0	10.0	27.0	12.0	12.0	37.0	2 652	263	10 1	8 2	SC
ECAS 139	0,80	Ateno	1,0	10,0	27,0	13,0	12,0	57,0	2,032	20,3	10,1	0,2	SC
Janela 2	0,40 a	Atorro	0.0	2.0	18.0	32.0	12.0	35.0	2 653	27.2	23.6	87	SM
ECAS 142	0,60	Ateno	0,0	2,0	16,0	32,0	13,0	55,0	2,033	52,5	23,0	0,7	SIVI
Janela 2	0,80 a	Atorro	0.0	0.0	22.0	22.0	12.0	24.0	2 670	22.4	22.7	0.6	SC
ECAS 145	1,00	Ateno	0,0	9,0	25,0	22,0	12,0	54,0	2,070	32,4	22,7	9,0	SC
Janela 3	0,80 a	Atorro	0.0	8.0	23.0	23.0	12.0	33.0	2 650	22.2	22.8	0.5	SC
ECAS 165	1,00	Atello	0,0	8,0	23,0	23,0	13,0	55,0	2,039	55,5	23,8	7,5	sc

Figura 4.23 - Carta de plasticidade com pontos da classificação dos finos dos materiais estudados

A Tabela 4.6 apresenta os resultados de caracterização de alguns solos da Formação Barreiras do estado de Pernambuco. Encontram-se representados nessa tabela a composição granulométrica, índice de plasticidade e limite de liquidez.

	,	,	Composição	- Com	Limites de			
Local	Referência	Prof. (m)	d	-	consistência (%)			
			Pedreg.	Areia	Silte	Argila	LL	IP
RMR	Estudo atual	0,40 – 2,35	0 - 16	41 - 63	8 - 29	24 - 40	22,6 – 41,3	4,3 – 18,7
Camaragibe	Leopoldo (2014)	0 - 1,5	0	37 - 51	4 - 7	42 - 59	39 - 43	22 - 33
Camaragibe	Magalhães (2013)	0 - 2,3	0 - 2	49 - 58	7 - 11	32 - 40	31 - 38	12 - 14
Cabo de Santo Agostinho	Guedes (2013)	1,0	0	64	6	30	30	12
Camaragibe	Silva (2007)	1,5 - 6,3	0 - 8	57 - 68	8 - 12	20 - 28	32 - 42	12 -14
Recife	Coutinho et al. (2006)	0 - 0,5	0 - 2	55 - 87	3 - 15	8 - 30	29 - 34	11 - 15
Recife	Santana (2006)	0 - 3,3	2 - 6	65 - 67	4 - 13	17 - 20	24 - 29	7 - 12
Cabo	Lafayette (2006)	0 - 6,0	0 - 5	66 -94	1 - 7	5 - 39	20 - 32	4 - 13
Comoragiha	Bandeira	0,5 - 5,0	0 - 8	40 - 57	8 - 31	20 - 48	45 - 49	14 - 19
Camaragibe	(2003)	0,5 - 0,4	0	58 - 85	4 - 24	10 - 35	20 - 31	6 - 11
Recife	Lima (2002)	0 - 1,3	0	39	3	58	42	16

Tabela 4.6 – Caracterização de solos da Formação Barreiras

4.2.2. Resultados de compactação

Os resultados das compactações dos blocos e janelas estão apresentados na Tabela 4.7. Os gráficos típicos da curva de compactação de acordo com a classificação granulométrica estão representados da

Figura 4.24 a Figura 4.26.

Observa-se na Tabela 4.7 que os materiais amolgados dos blocos coletados no terreno natural apresentaram maior densidade específica aparente seca máxima $(1,825 - 1,835 \text{ g/cm}^3)$, os materiais amolgados dos blocos coletados no aterro apresentaram um intervalo de 1,660 a 1,810 g/cm³ e os materiais amolgados das janelas coletados no aterro apresentaram intervalo de 1,690 a 1,785 g/cm³. De acordo com essa distribuição é como se tivessem sido utilizados pelo menos dois materiais distintos, com valores de massa específica seca máxima diferentes.

Amostra	Amostra Localização		Teor de umidade ótimo (%)
Bloco 1	Terreno natural / Jazida	1,825	14,0
Bloco 2	Terreno natural / Jazida	1,835	14,2
Bloco 3	Fronteira: Terreno natural / Aterro	1,710	15,8
Bloco 4	Aterro	1,760	15,5
Bloco 5	Aterro	1,795	13,5
Bloco 6	Aterro	1,818	11,9
Bloco 7	Aterro	1,775	13,3
Bloco 8	Aterro	1,810	13,1
Bloco 9	Aterro	1,790	14,7
Bloco 10	Aterro	1,660	16,7
Bloco 11	Aterro	1,760	13,4
Janela 1 ECAS 139	Aterro	1,690	13,3
Janela 2 ECAS 142	Aterro	1,740	12,5
Janela 2 ECAS 145	Aterro	1,785	12,3
Janela 3 ECAS 165	Aterro	1,762	12,5

Tabela 4.7 - Resumo dos resultados de compactação

Figura 4.24 - Curva de compactação típica para solo SM - Bloco 1

Figura 4.25 - Curva de compactação típica para solo SC - Bloco 6

4.2.3. Resultados do ensaio edométrico

Nas Tabela 4.8 a 4.18 estão sumarizados os resultados obtidos nos ensaios edométricos duplos realizados nos blocos indeformados. Os mesmos resultados obtidos para as amostras amolgadas coletadas nas janelas abertas no aterro estão apresentados nas Tabela 4.19 a 4.22. Nas Figura 4.27 a 4.41 estão apresentados os gráficos de deformação volumétrica x tensão vertical efetiva.

Ensaio edom	Ensaio edométrico duplo – Bloco 1					
Índice / Parâmetro	Umidade natural	Inundado				
Índice de vários, (e ₀)	0,775	0,755				
Indice de compressão, (C _c)	0,328	0,290				
Índice de descompressão, (Cr)	0,020	0,21				
Tensão de escoamento, σ' _{vm} (kPa)	211	200				
Saturação inicial, Sr (%)	54,033	51,203				
Umidade inicial, (W - %)	15,676	14,478				
Peso específico úmido ρ (g/cm ³)	1,740	1,742				
Peso específico seco pd (g/cm ³)	1,505	1521				
Expansão livre, (E _x)	-	0,05				

Tabela 48 –	Resumo	dos	resultados	do	ensaio	edom	étrico	dupl	o –	bloc	n 1
1 a 0 c 1 a + .0 -	Resumo	uos	resultados	uo	chisalo	cuom	curco	uupi	0 -	0100	U I

Ensaio edom	Ensaio edométrico duplo – Bloco 2					
Índice / Parâmetro	Umidade natural	Inundado				
Índice de vários, (e_0)	0,683	0,695				
Indice de compressão, (C _c)	0,284	0,261				
Índice de descompressão, (Cr)	0,020	0,20				
Tensão de escoamento, σ'_{vm} (kPa)	147	65				
Saturação inicial, Sr (%)	39,221	41,399				
Umidade inicial, W (%)	10,82	10,834				
Peso específico úmido, ρ (g/cm ³)	1,738	1,737				
Peso específico seco, ρ _d (g/cm ³)	1,578	1,567				
Expansão livre, (E _x)	-	0,09				

Tabela 4.9 - Resumo dos resultados do ensaio edométrico duplo - bloco 2

Tabela 4.10 - Resumo dos resultados do ensaio edométrico duplo - bloco 3

suno dos resultados do ensulo edomenteo dupio - bioeo 5						
Ensaio edom	Ensaio edométrico duplo – Bloco 3					
Índice / Parâmetro	Umidade natural	Inundado				
Índice de vários, (e_0)	0,773	0,789				
Indice de compressão, (C _c)	0,328	0,264				
Índice de descompressão, (C _r)	0,026	0,023				
Tensão de escoamento, σ'_{vm} (kPa)	170	100				
Saturação inicial, Sr (%)	55,865	58,033				
Umidade inicial, W (%)	16,262	17,245				
Peso específico úmido, ρ (g/cm ³)	1,742	1,740				
Peso específico seco, ρ _d (g/cm ³)	1,498	1,484				
Expansão livre, (E _x)	-	0,100				

Ensaio edométrico duplo – Bloco 4					
Índice / Parâmetro	Umidade natural	Inundado			
Índice de vários, (e_0)	0,831	0,830			
Indice de compressão, (C _c)	0,352	0,219			
Índice de descompressão, (Cr)	0,019	0,019			
Tensão de escoamento, σ'_{vm} (kPa)	180	40			
Saturação inicial, Sr (%)	43,660	44,253			
Umidade inicial, W (%)	13,643	13,813			
Peso específico úmido, ρ (g/cm ³)	1,650	1,654			
Peso específico seco, ρ _d (g/cm ³)	1,452	1,453			
Expansão livre, (E _x)	-	0,150			

Tabela 4.11 - Resumo dos resultados do ensaio edométrico duplo - bloco 4

Tabela 4.12 - Resumo dos resultados do ensaio edométrico duplo - bloco 5

Ensaio edométrico duplo – Bloco 5					
Índice / Parâmetro	Umidade natural	Inundado			
Índice de vários, (e_0)	0,726	0,726			
Indice de compressão, (C _c)	0,245	0,241			
Índice de descompressão, (C _r)	0,028	0,016			
Tensão de escoamento, σ'_{vm} (kPa)	86	70			
Saturação inicial, Sr (%)	58,704	58,723			
Umidade inicial, W (%)	15,979	15,984			
Peso específico úmido, ρ (g/cm ³)	1,792	1,792			
Peso específico seco, ρ _d (g/cm ³)	1,545	1,545			
Expansão livre, (E _x)	-	0,045			

Ensaio edom	Ensaio edométrico duplo – Bloco 6					
Índice / Parâmetro	Umidade natural	Inundado				
Índice de vários, (e_0)	0,692	0,694				
Indice de compressão, (C _c)	0,344	0,230				
Índice de descompressão, (C _r)	0,023	0,020				
Tensão de escoamento, σ'_{vm} (kPa)	197	132				
Saturação inicial, Sr (%)	47,893	48,909				
Umidade inicial, W (%)	12,463	12,768				
Peso específico úmido, ρ (g/cm ³)	1,767	1,770				
Peso específico seco, ρ _d (g/cm ³)	1,572	1,570				
Expansão livre, (E _x)	-	0,125				

Tabela 4.13 - Resumo dos resultados do ensaio edométrico duplo - bloco 6

Tabela 4.14 - Resumo dos resultados do ensaio edométrico duplo - bloco 7

sumo dos resultados do ensalo edometrico duplo - bioco 7						
Ensaio edom	Ensaio edométrico duplo – Bloco 7					
Índice / Parâmetro	Umidade natural	Inundado				
Índice de vários, (e_0)	0,813	0,816				
Indice de compressão, (C _c)	0,228	0,224				
Índice de descompressão, (C _r)	0,026	0,029				
Tensão de escoamento, σ'_{vm} (kPa)	33	23				
Saturação inicial, Sr (%)	63,006	63,733				
Umidade inicial, W (%)	19,265	19,549				
Peso específico úmido, ρ (g/cm ³)	1,749	1,751				
Peso específico seco, ρ _d (g/cm ³)	1,467	1,465				
Expansão livre, (E _x)	-	0,025				

Ensaio edométrico duplo – Bloco 8					
Índice / Parâmetro	Umidade natural	Inundado			
Índice de vários, (e_0)	0,790	0,812			
Indice de compressão, (C _c)	0,327	0,244			
Índice de descompressão, (C _r)	0,022	0,020			
Tensão de escoamento, σ'_{vm} (kPa)	225	41			
Saturação inicial, Sr (%)	54,170	54,210			
Umidade inicial, W (%)	13,435	13,453			
Peso específico úmido, ρ (g/cm ³)	1,811	1,810			
Peso específico seco, ρ _d (g/cm ³)	1,476	1,458			
Expansão livre, (E _x)	-	0,190			

Tabela 4.15 - Resumo dos resultados do ensaio edométrico duplo - bloco 8

Tabela 4.16 - Resumo dos resultados do ensaio edométrico duplo - bloco 9

Ensaio edométrico duplo – Bloco 9					
Índice / Parâmetro	Umidade natural	Inundado			
Índice de vários, (e_0)	0,738	0,737			
Indice de compressão, (C _c)	0,418	0,447			
Índice de descompressão, (C _r)	0,031	0,017			
Tensão de escoamento, σ'_{vm} (kPa)	193	113			
Saturação inicial, Sr (%)	54,691	54,573			
Umidade inicial, W (%)	15,223	15,171			
Peso específico úmido, ρ (g/cm ³)	1,758	1,758			
Peso específico seco, ρ _d (g/cm ³)	1,526	1,527			
Expansão livre, (E _x)	-	0,125			

Ensaio edométrico duplo – Bloco 10					
Índice / Parâmetro	Umidade natural	Inundado			
Índice de vários, (e_0)	0,948	0,947			
Indice de compressão, (C _c)	0,276	0,280			
Índice de descompressão, (C _r)	0,021	0,022			
Tensão de escoamento, σ'_{vm} (kPa)	55	32			
Saturação inicial, Sr (%)	60,260	59,919			
Umidade inicial, W (%)	21,480	21,332			
Peso específico úmido, ρ (g/cm ³)	1,658	1,657			
Peso específico seco, ρ _d (g/cm ³)	1,365	1,366			
Expansão livre, (E _x)	-	0,050			

Tabela 4.17 - Resumo dos resultados do ensaio edométrico duplo - bloco 10

Tabela 4.18 - Resumo dos resultados do ensaio edométrico duplo – bloco 11

Sumo dos resultados do ensalo edometrico dupio - bioco 11						
Ensaio edométrico duplo – Bloco 11						
Índice / Parâmetro Umidade natural Inund						
Índice de vários, (e_0)	0,792	0,790				
Indice de compressão, (C _c)	0,199	0,199				
Índice de descompressão, (C _r)	0,023	0,024				
Tensão de escoamento, σ'_{vm} (kPa)	212	107				
Saturação inicial, Sr (%)	73,897	73,555				
Umidade inicial, W (%)	17,030	16,908				
Peso específico úmido, ρ (g/cm ³)	1,920	1,920				
Peso específico seco, ρ _d (g/cm ³)	1,472	1,474				
Expansão livre, (E _x)	-	0,100				

Ensaio edométrico duplo – Janela 1 ECAS 139					
Índice / Parâmetro	Umidade ótima	Inundado			
Índice de vários, (e_0)	0,574	0,577			
Indice de compressão, (C _c)	0,201	0,157			
Índice de descompressão, (Cr)	0,020	0,019			
Tensão de escoamento, σ'_{vm} (kPa)	161,5	45			
Saturação inicial, Sr (%)	61,491	61,197			
Umidade inicial, W (%)	13,312	13,312			
Peso específico úmido, ρ (g/cm ³)	1,909	1,906			
Peso específico seco, p _d (g/cm ³)	1,685	1,682			
Expansão livre, (E _x)	-	0,355			

Tabela 4.19 - Resumo dos resultados do ensaio edométrico duplo – janela 1 ECAS 139

Tabela 4.20 - Resumo dos resultados do ensaio edométrico duplo – janela 2 ECAS 142

Ensaio edométrico duplo – Janela 2 ECAS 142					
Índice / Parâmetro	Umidade ótima	Inundado			
Índice de vários, (e_0)	0,520	0,520			
Indice de compressão, (C _c)	0,182	0,121			
Índice de descompressão, (C _r)	0,017	0,022			
Tensão de escoamento, σ'_{vm} (kPa)	200	55			
Saturação inicial, Sr (%)	62,003	61,974			
Umidade inicial, W (%)	12,153	12,158			
Peso específico úmido, ρ (g/cm ³)	1,958	1,957			
Peso específico seco, ρ _d (g/cm ³)	1,810	1,809			
Expansão livre, (E _x)	-	1,040			

Ensaio edométrico duplo – Janela 2 ECAS 145					
Índice / Parâmetro	Umidade ótima	Inundado			
Índice de vários, (e_0)	0,516	0,499			
Indice de compressão, (C _c)	0,164	0,122			
Índice de descompressão, (Cr)	0,019	0,035			
Tensão de escoamento, σ' _{vm} (kPa)	173,8	57			
Saturação inicial, Sr (%)	64,984	67,203			
Umidade inicial, W (%)	12,563	12,571			
Peso específico úmido, ρ (g/cm ³)	1,982	2,005			
Peso específico seco, ρ _d (g/cm ³)	1,761	1,781			
Expansão livre, (E _x)	-	1,425			

Tabela 4.21 - Resumo dos resultados do ensaio edométrico duplo – janela 2 ECAS 145

Tabela 4.22 - Resumo dos resultados do ensaio edométrico duplo – janela 3 ECAS 165

Junio des resultados de clisario edometrico dapio - juncia 5 Elerito 105						
Ensaio edométrico duplo – Janela 3 ECAS 165						
Índice / Parâmetro	Umidade ótima	Inundado				
Índice de vários, (e_0)	0,508	0,509				
Indice de compressão, (C _c)	0,167	0,157				
Índice de descompressão, (C _r)	0,017	0,019				
Tensão de escoamento, σ'_{vm} (kPa)	200	90				
Saturação inicial, Sr (%)	64,971	65,360				
Umidade inicial, W (%)	12,409	12,520				
Peso específico úmido, ρ (g/cm ³)	1,982	1,982				
Peso específico seco, ρ _d (g/cm ³)	1,763	1,762				
Expansão livre, (E _x)	-	0,275				

Figura 4.27 - Comparação entre amostra inundada e na umidade natural - bloco 1

Figura 4.28 - Comparação entre amostra inundada e na umidade natural - bloco 2

Figura 4.30 - Comparação entre amostra inundada e na umidade natural – bloco 4

Figura 4.31 - Comparação entre amostra inundada e na umidade natural - bloco 5

Figura 4.33 - Comparação entre amostra inundada e na umidade natural - bloco 7

Figura 4.35 - Comparação entre amostra inundada e na umidade natural - bloco 9

Figura 4.36 - Comparação entre amostra inundada e na umidade natural - bloco 10

Figura 4.37 - Comparação entre amostra inundada e na umidade natural - bloco 11

Figura 4.38 - Comparação entre amostra inundada e compactada na umidade ótima - janela 1 ECAS 139

Figura 4.39 - Comparação entre amostra inundada e compactada na umidade ótima – janela 2 ECAS 142 **Curva de Compressibilidade**

Figura 4.40 - Comparação entre amostra inundada e compactada na umidade ótima - janela 2 ECAS 145

Figura 4.41 - Comparação entre amostra inundada e compactada na umidade ótima - janela 3 ECAS 165

4.2.4. Resultados do potencial de colapso do solo

Através dos resultados do adensamento duplo, é possível perceber que as amostras inundadas tiveram maiores deformações (para a mesma tensão) do as amostras não inundadas. Esse aumento de deformação com a inundação representa o grau de colapso da amostra.

Através da Figura 4.27 a 4.37 é possível perceber que ocorreu um aumento nas deformações (para a mesma tensão) para as curvas dos blocos indeformados quando as amostras foram inundados. Esse aumento de deformação com a inundação representa o grau de colapso da amostra. Já a Figura 4.31 mostra que o bloco 5 apresenta a mesma deformação tanto para a amostra com umidade natural como na inundada.

Reginatto e Ferrero (1973) classifica o potencial de colapso de um solo com base no valor do coeficiente de colapsibilidade (C) apresentado no capítulo 2 (equação 2.5). A partir dos resultados dos ensaios edométricos duplos com amostras na condição de umidade natural e amostras inundadas (para os corpos de prova dos blocos indeformados), determinou-se os coeficientes de colapsibilidade de cada amostra. As informações para o cálculo do coeficiente de colapsibilidade e a classificação segundo Reginatto e Ferrero encontram-se na Tabela 4.23. Os pesos específicos naturais foram obtidos a partir dos corpos de prova dos ensaios edométricos. As profundidades determinadas para os blocos representam a diferença de cota entre o nível do terreno e o centro do bloco.

Amostro	Localização	Prof.	γnat	$- (\mathbf{l}_{\mathbf{r}} \mathbf{D}_{\mathbf{r}})$	σνρα	- (l ₁ D ₂)	Reginatto e F	errero (1973)
Amostra	Locanzação	(m)	(kN/m^3)	Ov0 (KPA)	(kPA)	Ovpn (KPA)	С	Classificação
Bloco 1	Terreno natural / Jazida	1,25	17,4	21,8	200	2011	0,090	CC
Bloco 2	Terreno natural / Jazida	1,85	17,4	32,2	65	147	0,286	CC
Bloco 3	Fronteira: terreno natural-atero	1,85	17,4	32,2	100	170	0,492	CC
Bloco 4	Aterro	1,25	16,5	20,6	40	180	0,122	CC
Bloco 5	Aterro	1,25	17,9	22,4	70	86	0,748	CC
Bloco 6	Aterro	1,55	17,7	27,4	132	197	0,617	CC
Bloco 7	Aterro	1,65	17,5	28,9	23	33	-1,439	VC
Bloco 8	Aterro	2,50	18,1	45,3	41	225	-0,024	VC
Bloco 9	Aterro	1,75	17,6	30,8	115	205	0,4803	CC
Bloco 10	Aterro	2,55	16,6	42,3	32	55	-0,811	VC
Bloco 11	Aterro	2,35	1,92	45,1	107	212	0,371	CC

Tabela 4.23 – Classificação da colapsibilidade do solo segundo Reginato e Ferrero (1973)

 \overline{CC} = condicionalmente colapsível; VC = verdadeiramente colapsível

Através do critério de classificação proposto por Reginatto e Ferrero (1973), o solo varia de verdadeiramente colapsível ($\sigma_{vpa} < \sigma_{v0}$ e C < 0) a condicionalmente colapsível ($\sigma_{vpa} > \sigma_{v0}$ e 0 < C < 1). Segundo essa proposta, o colapso de um solo condicionalmente colapsível ocorre quando aplica-se uma tensão adicional maior do que σ_{v0} . Entretanto, o solo suporta um acréscimo de tensão ($\sigma_{vpa} - \sigma_{v0}$) sem apresentar colapso.

O critério proposto por Jennings e Knight (1975) classifica o solo de acordo com a gravidade dos danos em uma obra (Tabela 2.4 - item 2.2.3.2), variando de sem problema a problema muito grave, a partir do valor do potencial de colapso (PC) (equação 2.4), ou deformação de colapso ε_c , para tensão de inundação de 200 kPa, conforme apresentado no capítulo 2.

Essa metodologia foi utilizada para classificar o colapso, mas sabe-se que é um resultado aproximado porque não foi feito o edométrico simples com tensão de inundação de 200 kPa. Entretanto, é de se esperar que os resultados sejam similares.

O potencial de colapso classificado pela proposta de Jenninght e Knight (1975) está apresentado na Tabela 4.24. Observa-se que duas (13,3 %) amostras apresentaram classificação "problemático", cinco (33,3 %) amostras não apresentam problemas quanto ao colapso e a maior parte (53,4 %) das amostras foram classificadas como sendo "problema moderado".

Amostra	Localização	$\begin{array}{c c} \boldsymbol{\epsilon}_{200}(\%) \\ \textbf{Umidade} \end{array} \begin{array}{c} \boldsymbol{\epsilon}_{200}(\%) \\ \boldsymbol{\dot{\boldsymbol{\delta}}}_{time} \end{array}$		ε ₂₀₀ (%)	Jennings e Knight (1975)		
		Natural	Otima	mundado	PC	Classificação	
Bloco 1	Terreno natural / Jazida	5,3	-	6,0	0,7	Sem problema	
Bloco 2	Terreno natural / Jazida	8,6	-	11,5	2,9	Problema moderado	
Bloco 3	Fronteira: terreno natural-atero	7,8	-	8,2	0,4	Sem problema	
Bloco 4	Aterro	6,9	-	12,1	5,2	Problemático	
Bloco 5	Aterro	9,4	-	10,0	0,6	Sem problema	
Bloco 6	Aterro	7,7	-	7,4	0,3	Sem problema	
Bloco 7	Aterro	13,5	-	15,5	2,0	Problema moderado	
Bloco 8	Aterro	8,3	-	11,5	3,2	Problema moderado	
Bloco 9	Aterro	6,2	-	14,0	7,8	Problemático	
Bloco 10	Aterro	12,0	-	16,0	4,0	Problema moderado	
Bloco 11	Aterro	5,2	-	7,4	2,2	Problema moderado	
Janela 1 - ECAS 139	Aterro	-	5,6	8,8	3,2	Problema moderado	
Janela 2 - ECAS 142	Aterro	-	3,5	7,5	4,0	Problema moderado	
Janela 2 - ECAS 145	Aterro	-	4,5	7,1	2,6	Problema moderado	
Janela 3 - ECAS 165	Aterro	-	5,8	5,3	0,5	Sem problema	

Tabela 4.24 – Potencial de colapso – classificação de Jennings e Knight (1975)

4.2.5. Resultados dos ensaios de compressão triaxial

Os resultados dos ensaios triaxiais realizados nos corpos de prova dos blocos indeformados e nos corpos de prova compactados na umidade ótima (energia Proctor Normal) das amostras coletadas nas janelas abertas no aterro e das amostras do blocos 4 e 11 estão apresentados na Tabela 4.25 em termos de ângulo de atrito e coesão.

Amostra	Localização	Coesão (saturada) (kPa)	Angulo de atrito (saturado) φ (°)	Tipo de ensaio
Bloco 1	Terreno nataural / jazida	1,3	34,6	CID
Bloco 2	Terreno nataural / jazida	4,0	35,1	CID
Bloco 3	Fronteira: terreno natural-aterro	1,2	30,9	CID
Bloco 4	Aterro	2,8	31,4	CID
Bloco 5	Aterro	4,0	32,1	CID
Bloco 6	Aterro	2,0	33,2	CID
Bloco 7	Aterro	2,3	33,5	CID
Bloco 8	Aterro	2,2	33,9	CID
Bloco 9	Aterro	2,8	35,2	CID
Bloco 10	Aterro	4,0	32,6	CID
Bloco 11	Aterro	2,5	33,2	CID
Janela 1 - ECAS 139	Aterro	3,9	35,0	CIU
Janela 2 - ECAS 142	Aterro	3,4	35,8	CIU
Janela 2 - ECAS 145	Aterro	2,4	36,7	CIU
Janela 3 - ECAS 165	Aterro	4,3	35,6	CIU
BL4C	Aterro	4	34	CID
BL11C	Aterro	3	34,5	CID

Tabela 4.25 – Resumo dos ângulos de atritos e coesão

Apresenta-se na Figura 4.42 a 480 as curvas de tensão x deformação, variação volumétrixa x deformação e trajetória de tensões, para os blocos indeformados e amostras das compactadas dos blocos 4 e 11. Nas Figura 4.81 a 4.92 estão apresentadas as curvas de tensão x deformação, trajetória de tensões e poropressão x deformação específica axial para as amostras compactadas das janelas.

Figura 4.42 – Ensaio triaxial CID: curva tensão x deformação – bloco 1

Figura 4.43 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 1

Figura 4.44 - Ensaio triaxial CID: Trajetória de tensões - bloco 1

Figura 4.45 - Ensaio triaxial CID: curva tensão x deformação – bloco 2

Figura 4.46 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 2

Figura 4.47 - Ensaio triaxial CID: Trajetória de tensões - bloco 2

Figura 4.48 - Ensaio triaxial CID: curva tensão x deformação - bloco 3

Figura 4.49 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 3

Figura 4.50 - Ensaio triaxial CID: Trajetória de tensões - bloco 3

Figura 4.51 - Ensaio triaxial CID: curva tensão x deformação – bloco 4

Figura 4.52 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 4

Figura 4.53 - Ensaio triaxial CID: Trajetória de tensões - bloco 4

Figura 4.55 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 5

Figura 4.56 - Ensaio triaxial CID: Trajetória de tensões – bloco 5

Figura 4.57 - Ensaio triaxial CID: curva tensão x deformação – bloco 6

Figura 4.58 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 6

Figura 4.59 - Ensaio triaxial CID: Trajetória de tensões - bloco 6

Figura 4.60 - Ensaio triaxial CID: curva tensão x deformação - bloco 7

Figura 4.61 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 7

Figura 4.62 - Ensaio triaxial CID: Trajetória de tensões - bloco 7

Figura 4.63 - Ensaio triaxial CID: curva tensão x deformação - bloco 8

Figura 4.64 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 8

Figura 4.65 - Ensaio triaxial CID: Trajetória de tensões - bloco 8

Figura 4.66 - Ensaio triaxial CID: curva tensão x deformação - bloco 9

Figura 4.67 - Ensaio triaxial CID: Variação volumétrixa x deformação axial - bloco 9

Figura 4.68 - Ensaio triaxial CID: Trajetória de tensões - bloco 9

Figura 4.69 - Ensaio triaxial CID: curva tensão x deformação - bloco 10

Figura 4.70 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 10 50 kPa — 100 kPa — 200 kPa — 400 kPa

Figura 4.71 - Ensaio triaxial CID: Trajetória de tensões - bloco 10

Figura 4.72 - Ensaio triaxial CID: curva tensão x deformação – bloco 11

Figura 4.75 - Ensaio triaxial CID: curva tensão x deformação - bloco 4 (amostra compactada em laboratório)

Figura 4.76 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 4 (amostra compactada em laboratório)

Figura 4.77 - Ensaio triaxial CID: Trajetória de tensões – bloco 4 (amostra compactada em laboratório) 50 kPa – 100 kPa – 200 kPa – 400 kPa

Figura 4.78 - Ensaio triaxial CID: curva tensão x deformação – bloco 11 (amostra compactada em laboratório)

Figura 4.79 - Ensaio triaxial CID: Variação volumétrixa x deformação axial – bloco 11 (amostra compactada em laboratório)

Figura 4.80 - Ensaio triaxial CID: Trajetória de tensões - bloco 11 (amostra compactada em laboratório)

s' (kPa)

Figura 4.81 - Ensaio triaxial CIU: curva tensão x deformação - janela 1 ECAS 139

Figura 4.82 - Ensaio triaxial CIU: Trajetória de tensões - janela 1 ECAS 139

Figura 4.83 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial - janela 1 ECAS 139

Figura 4.84 - Ensaio triaxial CIU: curva tensão x deformação – janela 2 ECAS 142

Figura 4.85 - Ensaio triaxial CIU: Trajetória de tensões - janela 2 ECAS 142

Figura 4.86 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial - janela 2 ECAS 142

Figura 4.87 - Ensaio triaxial CIU: curva tensão x deformação – janela 2 ECAS 145

Figura 4.88 - Ensaio triaxial CIU: Trajetória de tensões - janela 2 ECAS 145

Figura 4.89 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial - janela 2 ECAS 145

Figura 4.90 - Ensaio triaxial CIU: curva tensão x deformação – janela 3 ECAS 165

Figura 4.91 - Ensaio triaxial CIU: Trajetória de tensões - janela 3 ECAS 165

Figura 4.92 - Ensaio triaxial CIU: Poropressão x Deformação Específica Axial - janela 3 ECAS 165

A Tabela 4.6 apresenta os parâmetros de resistência de pico de alguns solos da Formação Barreiras do estado de Pernambuco. Encontram-se representados nessa tabela os resultados obtidos nesta pesquisa das amostras indeformadas coletadas no terreno natural e no aterro e das amostras compactadas em laboratório.

Referência / Local	Fácies	Tipo de ensaio	Descriçaõ / SUCS	IP	Condição do CP	c (kPa)	φ (°)
Estudo atual (Terreno natural)	A ser identificada	Triaxial (CID-C)	SM	6,56 - 7,61	Saturado	1,3 – 4,0	34,6 - 35,1
Estudo atual (Compactação em campo - Aterro)	A ser identificada	Triaxial (CID-C)	SC	10,0 - 18,7	Saturado	2,0-4,0	32,1 - 35,2
Estudo atual (Compactação em campo - Aterro)	A ser identificada	Triaxial (CID-C)	CL	10,4 - 18,3	Saturado	2,5-4,0	31,4 - 33,5
Estudo atual (Compactação em laboratório)	A ser identificada	Triaxial (CIU-C)	SC	8,2-9,6	Saturado	2,4-4,3	35,0 - 36,7
Estudo atual (Compactação em laboratório)	A ser identificada	Triaxial (CIU-C)	SM	8,7	Saturado	3,4	35,8
Estudo atual (Compactação em laboratório)	A ser identificada	Triaxial (CIU-C)	CL	10,4 – 12,9	Saturado	3,0-4,0	34,0 - 34,5
Ribeiro (2015) Tibau do Sul-RN	Colúvio FB	Cis. Direto	SM-SC	6	Inundado	7,3	26,0
Souza (2014)	Canal	Cis.	CI	22 22	Natural	10 - 28,75	32,92 – 35,32
Camaragibe-PE	Fluvial	Direto	CL	22 - 33	Inundado	1 – 6,19	30,73 - 32
Magalhães (2013)	Canal	Cis.	CL	11 - 13	Natural	13,7 – 27,3	28 - 36
Camaragibe-PE	Fluvial	Direto			Inundado	3,3 - 8,7	30 - 35
Guedes (2013) Cabo de Santo Agostinho	A ser identificada	Triaxial	SC	18	Saturado	26,0	36,9
Severo (2011) Tibau do Sul-RN	Fluvia de menor enercia de transporte	Triaxial (CID)	SC	11	Saturado	6,5	29
Severo (2011) Tibau do Sul-RN	Fluvia de menor enercia de transporte	Triaxial (CID)	SM-SC cimentada naturalmente	5 - 6	Saturado	62 - 110	28 - 30
Meira (2008)	Canal	Cis.	SC	7.9 – 9.2	Natural	1,0-4,2	28-34
<pre></pre>	Fluvial	Direto	_	, - ,	Inundado	0,4 - 3,5	23 - 26
Silva (2007)	Planície	Cis.	SC	12 - 14	Natural	45,0-47,0	31,0-44,0
Camaragibe-PE		Direto	JC.	12 - 14	Inundado	0,0-3,7	31,0 - 34,0
Severo et al. (2006) Tibau do Sul-RN	A ser	Cis. Direto	Cl	7 - 19	Natural Inundado	116 - 192 23 - 54	$\frac{27 - 32}{26 - 30}$
	acinincaud	Diffeo			munuau0	23-34	20-30

Tabela 4.26 - Parâmetros de resistência de pico de solos provenientes da Formação Barreiras na RMR e outras

Referência / Local	Fácies	Tipo de ensaio	Descriçaõ / SUCS	IP	Condição do CP	c (kPa)	¢ (°)
Silva et al. (2005)	Aluvial de	Cis.	SC	12 13	Natural	43 - 46	31 – 45
Camaragibe -PE	canal	Direto	50	12 - 15	Inundado 0 – 3,7		31 - 35
Bandeira et al. (2004) Camaragibe-PE	Leque proximal	Cis. Direto	Silte arenoso ML	14 - 16	Inundado	12	29
Lafayette et al. (2003; 2005)	Leque	Cis.	50	0 12	Natural	33 - 56	33 - 36
Cabo de S. Agostinho - PE	fluvial	Direto	SC	9 - 13	Inundado	1,5 – 1,8	33 - 35
Lima (2002) /	A ser	Cis.	SC	16	Natural	28	31
Recife -PE	identificada	Direto	SC	10	Inundado	10	32
Lafayette (2000) Alto do Reservatório- Recife - PE	A ser identificada	Cis. Direto	Areia argilosa SC	11 - 18	Inundado	7 - 13	24 - 26
Coutinho et al. (1999; 2006)	A ser	Cis.			Natural	13	31
Santos (2001) Horto Dois Irmãos Recife-PE	identificada	Direto	SC	10 - 16	Inundado	0	30
Gusmão Filho et al. (1986) / Olinda -PE	A ser identificada	Triaxial (CU)	Areia argilosa SC	31 - 40	Inundado	20 - 50	20 - 24

Fonte: (a partir de Coutinho e Severo, 2009, atualizada por Coutinho e Severo no prelo)

5. CAPÍTULO 5 – DISCUSSÃO DOS RESULTADOS

Neste capítulo, comparam-se resultados de condutividade hidráulica "in situ" com o permeâmetro guelph e parâmetros do solo do aterro obtidos através de blocos indeformados coletadas no aterro e terreno natural / jazida com parâmetros obtidos de amostras compactadas sob controle tecnológico em laboratório na umidade ótima (energia Proctor Normal).

A comparação dos parâmetros do solo foi estabelecida através de uma correspondência entre as amostras dos blocos indeformados e as amostras compactadas das janelas conforme sua localização e composição granulométrica. Porém, não foi encontrada uma correspondência granulométrica entre os blocos 3, 4, 7, 10 e 11 e as janelas. Nesse caso, optou-se por fazer essa correspondência com as amostras compactadas do bloco 4 e bloco 11, pois eles representam a área A e B, respectivamente. A Tabela 5.1 mostra essas correspondências. Entretanto, é sabido que um dos fatores que influenciam na compactação é o tipo de solo. Sendo assim, a correspondência quanto a localização serve apenas pra fins de se situar na área em estudo. As análises comparativas levaram em conta a correspondência granulométrica da amostra mais próxima, dentro de sua respectiva área.

	Amostras	Amostras	
Bloco	correspondente	correspondente	SUCS
	(Localização)	(Granulometria)	
1	Janela 3 ECAS 165	Janela 2 - ECAS 142	SM
2	Janela 1 ECAS 139	Janela 2 - ECAS 142	SM
3	Janela 2 - ECAS 142 / ECAS 145	BL11C	CL
4	Janela 3 - ECAS 165	BL4C	CL
5	Janela 3 - ECAS 165	Janela 3 - ECAS 165	SC
6	Janela 3 - ECAS 165	Janela 3 - ECAS 165	SC
7	Janela 3 - ECAS 165	BL4C	CL
0	Janela 2 - ECAS 142 /	Janela 2 - ECAS 145 /	SC
0	ECAS 145	Janela 1 - ECAS 139	SC
0	Janela 2 - ECAS 142 /	Janela 2 - ECAS 145 /	SC
9	ECAS 145	Janela 1 - ECAS 139	SC
10	Janela 1 - ECAS 139	BL11C	CL
11	Janela 1 - ECAS 139	BL11C	CL

Tabela 5.1 - Relação (localização e granulométrica) entre o material dos blocos e das janelas

É importante ressaltar que os índices e parâmetros aqui apresentados, na verdade, são referentes as condições atuais do aterro e da localização da amostra.

5.1. Condutividade hidráulica "in situ"

Pelos resultados obtidos, observa-se que os valores de K_{fs} do terreno natural variaram no intervalo entre 8,5 x 10⁻⁸ e 2,62 x 10⁻⁶ m/s (maiores permeabilidades encontradas). De acordo com Souza Pinto (2006), esses valores de permeabilidade são condizentes com siltes (Tabela 5.2). Estes valores também condizem com a classificação granulométrica (SUCS).

Os resultados de K_{fs} para o material do aterro variaram de 6,37 x 10^{-8} a 4,25 x 10^{-7} m/s (menores permeabilidades encontradas). De acordo com Sousa Pinto (2006), esses valores de permeabilidade são condizentes com siltes (Tabela 5.2).

Argilas	$< 10^{-9} \text{ m/s}$
Siltes	$10^{-6} \text{ a } 10^{-9} \text{ m/s}$
Areias Argilosas	10^{-7} m/s
Areias Finas	10 ⁻⁵ m/s
Areias Médias	10^{-4} m/s
Areias Grossas	10^{-3} m/s

Tabela 5.2 - Alguns valores típicos de valores de permeabilidade (Sousa Pinto, 2006)

A permeabilidade do material do aterro apresentou-se relativamente baixa (na ordem de 10⁻⁸ m/s). Este valor de permeabilidade permite a infiltração de água no terreno, entretanto deve ocorrer dificuldade na completa penetração da água ao longo de todo o aterro, devido a sua grande espessura, mas resulta em uma perigosa deficiência no escoamento da mesma.

Já o solo natural apresentou permeabilidade maior (na ordem de 10⁻⁶ m/s). Considerando as regiões de terreno natural e aterro na área em estudo, pode ocorrer uma percolação que se inicia no solo natural e vai até a zona de aterro.

5.2. Análise granulométrica

As curvas granulométricas estão apresentadas da Figura 5.1 a Figura 5.4 e foram agrupadas de acordo com a correspondência granulométrica apresentada na Tabela 5.1. Os blocos 3, 4, 7, 10 e 11 não apresentaram correspondência granulométrica em relação as janelas, porém suas curvas foram agrupadas em um único gráfico por apresentarem correspondência granulométrica entre si. Percebe-se que as curvas são bastantes semelhantes umas às outras, levando a concluir que as diferenças na classificação, na verdade, devem-se à pequenas variações nas porcentagens que passam nas peneiras. A Figura 5.5 apresenta as curvas agrupadas de todos os blocos e janelas.

Figura 5.1 – Curva granulométrica: BL1, BL2 e ECAS 142

Figura 5.3 - Curva granulométrica: BL8, BL9, ECAS 139 e ECAS 145

Figura 5.4 - Curva granulométrica: BL13, BL4, BL7, BL10, BL11

Figura 5.5 – Curva granulométrica de todos os blocos e janelas

De maneira geral, o material dos blocos coletados no aterro corresponde, em parte, a areias argilosas e, em parte, a argilas de baixa plasticidade. O material coletado das janelas abertas no aterro, em sua maior parte, foi classificado como sendo areia argilosa (SC).

O material dos blocos coletados no terreno natural / jazida corresponde a areias siltosas. Este fato indica a existência de pelo menos três materiais diferentes presentes no aterro.

Ao todo foi possível classificar o solo de 15 amostras (incluindo blocos e janelas), sendo 7 (46,67%) classificadas como SC (areia argilosa); 3 (20,00%) como SM (areia siltosa), e 5 (33,33%) como CL (argila de baixa compressibilidade).

Observando a Tabela 5.3 constata-se que os valores de índices de plasticidade dos blocos coletados no aterro ficaram entre 4,34 % e 18,72 %. Já os valores das amostras das janelas coletadas no aterro tiveram menor dispersão ficando entre 8,24 % e 9,6 %. Dessa forma, percebe-se que há maior heterogeneidade entre os materiais dos blocos do que entre o material das janelas.

Para os blocos extraídos no terreno natural, observa-se que os valores de índices de plasticidade ficaram no intervalo de 6,56 - 7,61 %, o que corresponde ao menor intervalo do índice de plasticidade.

Ao se comparar os blocos coletados no aterro com as amostras das janelas coletadas no aterro, tem-se os maiores índices de plasticidade no material dos blocos. As maiores porcentagens de argila também são encontradas nos blocos, o que condiz com a classificação granulométrica que os blocos apresentaram (CL - argila de baixa plasticidade), enquanto as janelas foram classificadas apenas como SC (areias argilosas) e SM (areias siltosas).

Tuotia			Incolucion				ID	ID	A •1
Bloco	LL	LP	IP	Argila	Amostra	LL	LP	IP	Argila
Dioco	(%)	(%)	(%)	(%)	correspondente	(%)	(%)	(%)	(%)
1	33,20	26,64	6,56	28	Janela 2 ECAS 142	32,3	23,6	8,7	18
2	32,50	24,89	7,61	29	Janela 2 ECAS 142	32,3	23,6	8,7	18
3	31,80	22,91	8,89	24	*	*	*	*	*
4	32,00	19,11	12,89	34	*	*	*	*	*
5	41,30	22,58	18,72	36	Janela 3 ECAS 165	33,3	23,77	9,53	23
6	22,65	18,31	4,34	28	Janela 3 ECAS 165	33,3	23,77	9,53	23
7	34,60	21,00	13,59	40	*	*	*	*	*
8	29,00	19,04	9,96	25	Janela 1 ECAS 139 / Janela 2 ECAS 145	26,3 - 32,4	18,06 - 22,72	8,24 – 9,60	23 – 26
9	30,30	17,65	12,65	34	Janela 1 ECAS 139 / Janela 2 ECAS 145	26,3 - 32,4	18,06 - 22,72	8,24 – 9,60	23 - 26
10	30,50	20,09	10,41	40	*	*	*	*	*
11	37,00	18,67	18,33	32	*	*	*	*	*

Tabela 5.3 – Valores dos limites de consistência para os blocos e as janelas correspondentes

* correspondência não utilizada

5.3. Comparação dos parâmetros de compactação

Os resultados das compactações dos blocos e janelas estão apresentados na Tabela 5.4 de acordo com suas correspondências granulométricas. É possível perceber que a densidade seca máxima dos blocos, em geral, deram valores mais elevados, assim como os valores de umidade ótima.

A Figura 5.6 a Figura 5.9 apresentam as curvas de compactação para os materiais dos blocos (saco) e para os materiais da janela. Aquelas agrupadas num mesmo gráfico são referentes às semelhanças apresentadas quanto a granulometria, conforme apresentado anteriormente (Tabela 5.1). A Figura 5.10 apresenta todas as curvas agrupadas num mesmo gráfico.

Bloco	Densidade seca máxima (g/cm ³)	Umidade ótima (%)	midadeAmostraima (%)correspondente		Umidade ótima (%)
1	1,825	14,0	Janela 2 - ECAS 142	1,740	12,5
2	1,835	14,2	Janela 2 - ECAS 142	1,740	12,5
3	1,710	15,8	*	*	*
4	1,760	15,5	*	*	*
5	1,795	13,5	Janela 3 - ECAS 165	1,762	12,5
6	1,818	11,9	Janela 3 - ECAS 165	1,762	12,5
7	1,775	13,3	*	*	*
8	1,810	13,1	Janela 1 ECAS 139 / Janela 2 - ECAS 145	1,69 - 1,785	12,3 – 13,3
9	1,790	14,7	Janela 1 ECAS 139 / Janela 2 - ECAS 145	1,69 - 1,785	12,3 – 13,3
10	1,660	16,7	*	*	*
11	1,760	13,4	*	*	*

Tabela 5.4 – Densidade seca máxima e umidade ótima do material dos blocos e das janelas correspondentes

* Correspondência não utilizada

Figura 5.7 - Curvas de compactação: BL5, BL6 e ECAS 165

Figura 5.8 - Curvas de compactação: BL8, BL9 e ECAS 145

Figura 5.9 - Curvas de compactação: BL3, BL4, BL7, BL10 e BL11 **Curvas de Compactação**

Figura 5.10 – Curvas de compactação de todos os blocos e janelas **Curvas de Compactação**

Observando a Figura 5.6 verifica-se que os blocos 1 e 2 apresentam bastante semelhança tanto para os valores de densidade seca máxima como para os teores de umidade ótima. Já a curva da janela 2 (ECAS 142) está deslocada para esquerda e para baixo, indicando valores de $\rho_{dmáx}$ e $W_{ótima}$ menores em relação aos blocos. As amostras apresentam pequenas variações nas porcentagens de solo que passam nas peneiras, esse fato explica a pequena variação entre os valores de densidade aparente seca máxima e teor de umidade ótima, uma vez que as amostras foram compactadas na mesma energia (Proctor Normal).

A Figura 5.7 apresenta as curvas referentes aos blocos 5, 6 e à janela 2 ECAS 145. Percebe-se que, apesar das semelhanças em relação à granulometria, mais uma vez as pequenas variações nas porcentagens que passam nas peneiras correspondem a valores distintos de $\rho_{dmáx}$ e $W_{\delta tima}$. O bloco 6, por exemplo, apresenta uma quantidade de finos (36 %) menor em relação as outras duas amostras (49 – 46 %), o que é coerente com sua curva em relação as demais. As variações de $\rho_{dmáx}$ e $W_{\delta tima}$ apresentadas nas curvas da Figura 5.8 e Figura 5.9 também estão sendo comandadas pela quantidade de finos presentes nas amostras.

Na retirada de alguns blocos foram feitos os ensaios do funil de areia para obter a densidade natural do material em campo. A partir desses resultados, foram analisados os dados do controle de compactação dos aterros em termos de "grau de compactação" (GC = $(\rho_{d,campo}/\rho_{d,max})x100$) para os valores atuais dos parâmetros em campo, onde: $\rho_{d,campo}$ é a massa específica aparente seca no campo (atual); $\rho_{d,max}$ é a massa específica aparente seca máxima obtida no ensaio de compactação. É importante ressaltar que o "grau de compactação" aqui citado, na verdade, é a relação entre a densidade seca de campo, nas condições atuais, com a densidade seca máxima de cada bloco.

Além desses parâmetros citados no parágrafo anterior, foram comparados os parâmetros de $\rho_{d,adens}$. e $W_{adensam}$. Esses parâmetros foram obtidos dos corpos de prova provenientes do bloco indeformado e utilizados no ensaio edométrico.

As umidades de campo também foram obtidas no momento de retirada dos blocos. Uma porção de material era colocada em cápsulas de alumínio e acondicionadas em isopor. Entretanto, devido à espera para a pesagem em laboratório, supõe-se que muitas delas perderam umidade no trajeto. Por isso tem-se valores tão baixos de W_{campo} na Tabela 5.5. A Figura 5.11 apresenta os resultados de massa específica seca máxima x massa específica seca em campo.

No cálculo do $\rho_{d,campo}$ foi utilizado a densidade natural "in situ" determinada no momento da coleta do bloco e a umidade obtida no ensaio de adensamento, pois os resultados das umidade de campo parecem apresentar valores menores do que deveriam.

Bloco	ρd,adens (g/cm ³)	ρd,campo (g/cm ³)	ρd,max (g/cm ³)	GC (%)	Wadensam (%)	Wcampo (%)	Wótima (%)
4	1,452	1,452	1,760	82,50	13,643	-	15,5
5	1,545	1,292	1,795	71,98	15,979	-	13,45
6	1,572	1,504	1,818	82,73	12,615	7,29	11,90
7	1,467	1,297	1,775	73,07	19,407	10,82	13,25
8	1,596	1,470	1,810	81,22	13,444	8,47	13,10
9	1,526	1,451	1,790	81,06	15,19	8,52	14,70
11	1,641	1,483	1,760	84,26	16,969	15,22	13,35

Tabela 5.5 - Grau de compactação para alguns blocos retirados

Figura 5.11 - Massa específica seca máxima x massa específica seca em campo

Através da Tabela 5.5 é possível constatar que os blocos retirados no aterro apresentam graus de compactação muito abaixo do mínimo permitido (95%) de acordo com a exigência da DNER-ES 282/97 para material de aterro. Observa-se que $\rho_{d,adens}$. e $\rho_{d,campo}$ tem valores aproximados e muito menores que $\rho_{d,máx}$.

Este fato confirma a ideia de que o aterro, nas condições atuais, está muito aquém das exigências técnicas. Isto pode ser explicado tanto pela existência de tipos de solos diferentes no aterro, como também por deficiência na execução da compactação e do seu controle.

Observa-se na Figura 5.11 que os resultados de massa específica seca em campo apresentam uma dispersão. Considerando uma envoltória de \pm 3%, nenhum resultado obtido de massa específica seca em campo se quer se aproxima dessa envoltória.

5.4. Comparação dos parâmetros de compressibilidade

A Tabela 5.6 exibe um resumo dos resultados dos parâmetros analisados no ensaio edométrico, tanto para as amostras inundadas como para as não inundadas. Da Figura 5.12 a Figura 5.19 estão apresentados os gráficos de deformação volumétrica x tensão vertical efetiva para todos os blocos e suas amostras compactadas correspondentes (de acordo com a granulometria). Da Figura 5.12 a Figura 5.15 mostram-se os resultados para as amostras não inundadas e da Figura 5.16 a Figura 5.19 apresentam-se os resultados para as amostras inundadas.

Bloco	Condição amostra	eo	Peso esp. úmido (g/cm ³)	Índice de compressão Cc	σ' _{vm} (kPa)	Sr (%)	Amostra compactada correspondente	Condição amostra	eo	Peso esp. úmido (g/cm ³)	Índice de compressão Cc	σ' _{vm} (kPa)	Sr (%)
1	Natural	0,775	1,740	0,328	211	54,033	Janela 2 ECAS 142	Ótima	0,520	1,958	0,182	200	61,974
1	Inundada	0,755	1,742	0,290	200	51,203	Janela 2 ECAS 142	Inundada	0,520	1,957	0,121	55	62,003
2	Natural	0,683	1,738	0,284	147	39,221	Janela 2 ECAS 142	Ótima	0,520	1,958	0,182	200	61,974
2	Inundada	0,695	1,737	0,261	65	41,399	Janela 2 ECAS 142	Inundada	0,520	1,957	0,121	55	62,003
2	Natural	0,773	1,742	0,328	170	55,865	-	-	-	-	-	-	-
	Inundada	0,789	1,740	0,264	100	58,033	-	-	-	-	-	-	-
4 Natural		0,831	1,650	0,352	180	43,66	-	-	-	-	-	-	-
4	Inundada	0830	1,654	0,219	40	44,253	-	-	-	-	-	-	-
5	Natural	0726	1,792	0,245	86	58,704	Janela 3 ECAS 165	Ótima	0,508	1,982	0,167	200	64,471
5	Inundada	0,726	1,792	0,241	70	58,723	Janela 3ECAS 165	Inundada	0,509	1,982	0,157	90	65,36
6	Natural	0,692	1,767	0,344	197	47,893	Janela 3ECAS 165	Ótima	0,508	1,982	0,167	200	64,471
6	Inundada	0,694	1,770	0,230	132	48,909	Janela 3ECAS 165	Inundada	0,509	1,982	0,157	90	65,36
	Natural	0,813	1,749	0,228	33	63,006	-	-	-	-	-	-	-
/	Inundada	0,816	1,751	0,224	23	63,733	-	-	-	-	-	-	-
Q	Natural	0,790	1,811	0,327	225	54,17	Janela 2ECAS 145 / Janela 1 ECAS 139	Ótima	0,516	1,982	0,164 - 0,201	173,8	64,984
Jocoa1 $\frac{N}{Im}$ 2 $\frac{N}{Im}$ 3 $\frac{N}{Im}$ 4 $\frac{N}{Im}$ 5 $\frac{N}{Im}$ 6 $\frac{N}{Im}$ 7 $\frac{N}{Im}$ 8 $\frac{N}{Im}$ 9 $\frac{N}{Im}$ 9 $\frac{N}{Im}$ 10 $\frac{N}{Im}$ 11 $\frac{N}{Im}$	Inundada	0,812	1,810	0,244	41	54,21	Janela 2 ECAS 145 / Janela 1 ECAS 139	Inundada	0,499	2,005	0,122 - 0,157	57	67,203
0	Natural	0,738	1,758	0,418	133	54,691	Janela 2 ECAS 145 / Janela 1 ECAS 139	Ótima	0,516	1,982	0,164 - 0,201	173,8	64,984
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 11 \end{array} $	Inundada	0,737	1,758	0,447	113	54,573	Janela 2 ECAS 145 / Janela 1 ECAS 139	Inundada	0,499	2,005	0,164 - 0,201	57	67,203
10	Natural	0,948	1,658	0,276	55	60,26	-	-	-	-	-	-	-
10	Inundada	0,947	1,657	0,280	32	59,919	-	-	-	-	-	-	-
11	Natural	0,792	1,920	0,199	212	73,897	-	-	-	-	-	-	-
11	Inundada	0,790	1,920	0,199	107	73,555	-	-	-	-	-	-	-

Tabela 5.6 - Comparação dos parâmetros determinados nos ensaios de adensamento entre os blocos indeformados e amostras compactadas correspondentes

Figura 5.13 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não inundado – BL5, BL6 e ECAS 165

Figura 5.14 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não inundado – BL8, BL9, ECAS 139 e ECAS 145

Figura 5.15 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova não inundado – BL3, BL4, BL7, BL10 e BL11

135

Figura 5.17 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova inundado – BL5, BL6 e ECAS 165

Figura 5.18 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova inundado – BL8, BL9, ECAS 139 e ECAS 145

Figura 5.19 - Gráfico deformação volumétrica x tensão vertical efetiva – corpo de prova inundado – BL3, BL4, BL7, BL10 e BL11

O índice de vazios para os blocos coletados no aterro (compactados em campo) apresentaram intervalo entre 0,692 e 0,948 (maiores índices de vazios). Nos blocos retirados no terreno natural / jazida (condição natural), esses valores ficaram entre 0,683 e 0,775. O material compactado das janelas, sob controle de laboratório, em sua umidade ótima e densidade seca máxima apresentou um índice de vazios entre 0,499 e 0,577 (menores índices de vazios). Isso indica que o aterro encontra-se com menor compacidade do que seria esperado ao se compactar com $\rho_{d,max}$ e $W_{\text{ótima}}$.

Analisando os valores de tensões de pré-adensamento percebe-se que, em geral, são semelhantes para os blocos indeformados e amostras das janelas compactadas na umidade ótima. Entretanto, alguns blocos apresentaram tensões de pré-adensamento muito baixas: bloco 7 (33 e 23 kPa – CP natural e inundado, respectivamente) e Bloco 10 (55 e 32 kPa – CP natural e inundado, respectivamente) e Bloco 10 (55 e 32 kPa – CP natural e inundado, respectivamente) e Bloco 10 (55 e 32 kPa – CP natural e inundado, respectivamente). Este fato pode ser justificado pelos altos teores de umidade. Enquanto a média de umidade nos outros blocos foi igual a 14,47 %, nos blocos 7 e 10 a umidade foi de 19,407 e 21,406 %, respectivamente.

Quanto à análise dos gráficos de deformação volumétrica x tensão vertical efetiva se pode concluir que o material das janelas (compactada em laboratório com $\rho_{d,máx}$ e $W_{\delta tima}$) é menos compressível que o material dos blocos indeformados (compactado em campo), pois praticamente em todas as Figuras (Figura 5.12 a Figura 5.19), as curvas das janelas mostraram sofrer menores deformações volumétricas para uma mesma tensão efetiva, quando comparadas aos blocos indeformados coletados no aterro. Esse comportamento foi observado tanto para as amostras inundadas como não inundadas.

Este resultado da compressibilidade indica que o material pode ter sido compactado no ramo úmido da curva de compactação. Lambe e Whitman (1969) citam que a razão desse comportamento está no fato que amostras compactadas no ramo seco da curva de compactação tende a se orientar na direção normal à direção da aplicação da carga.

5.5. Potencial de colapso do solo

A Tabela 5.7 apresenta o grau de colapsibilidade para todos os blocos e janelas organizados de acordo com a respectiva correspondência granulométrica adotada. Segundo proposta de Reginatto e Ferrero (1973), duas (50 %) amostras na área B e uma amostra na área A (25 %) foram classificadas como sendo verdadeiramente colapsível, para as amostras indeformadas coletadas no aterro. Já a proposta de Jennings e Knight (1975), para os blocos coletados no aterro, classifica uma amostra na área A e uma amostra na área B como sendo "problemático".

As amostras das janelas compactadas em laboratório na umidade ótima foram classificadas como sendo "problema moderado" segundo propostas de Jennings e Knight (1975). A mesma classificação foi encontrada para os blocos indeformados coletados no terreno natural.

Avaliando os resultados obtidos das amostras indeformadas coletadas no aterro e os resultados obtidos das amostras compactadas das janelas abertas no aterro, percebe-se que apenas nas amostras indeformadas dos blocos tiveram o potencial de colapso classificado como verdadeiramente colapsível (ou "problemático).

Dlago	Loodinooão	Á nag	Regina	tto e Ferrero (1973)	Jeni	nings e Knight (1975)	Amostra	Logal	á mag	Jenni	Jennings e Knight (1975)	
Bioco	Localização	Area	С	C Classificação PC Gravidade correspon		correspondente	Local.	Alea	PC (%)	Gravidade		
1	Terreno natural / Jazida	А	0,090	CC	0,7	Sem problema	Janela 2 ECAS 142	Aterro	А	4,0	Problema moderado	
2	Terreno natural / Jazida	В	0,286	CC	2,9	Problema moderado	Janela 2 ECAS 142	Aterro	А	4,0	Problema moderado	
3	Fronteira: terreno natural- aterro	В	0,492	CC	0,4	Sem problema	-	-	-	-	-	
4	Aterro	Α	0,122	CC	5,2	Problemático	-	-	-	-	-	
5	Aterro	А	0,748	CC	0,6	Sem problema	Janela 3 ECAS 165	Aterro	В	2,6	Problema moderado	
6	Aterro	А	0,617	CC	0,3	Sem problema	Janela 3 ECAS 165	Aterro	В	2,6	Problema moderado	
7	Aterro	А	-1,439	VC	2,0	Problema moderado	-	-	-	-	-	
8	Aterro	В	-0,024	VC	3,2	Problema moderado	Janela 1 ECAS 139 / Janela 2 ECAS 145	Aterro	А	3,2 / 2,6	Problema moderado	
9	Aterro	В	0,4803	CC	7,8	Problemático	Janela 1 ECAS 139 / Janela 2 ECAS 145	Aterro	А	3,2 / 2,6	Problema moderado	
10	Aterro	В	-0,811	VC	4,0	Problema moderado	-	-	-	-	-	
11	Aterro	В	0,371	CC	2,2	Problema moderado	-	-	-	-	-	

Tabela 5.7 – Comparação do potencial de colapso entre o material indeformado do blocos e o material compactado das janelas

Observando as classificações de colapso apresentadas na Tabela 5.7, percebe-se que as amostras classificadas segundo Reginato e Ferrero (1973) como sendo verdadeiramente colapíveis foram classificas segundo Jennings e Knight (1975) com sendo "problema moderado". Já as amostras classificas segundo Jennings e Knight (1975) como sendo "problemático" foram classificadas segundo Reginato e Ferrero (1973) como sendo condicionalmente colapsível, onde o colapso pode ocorrer quando um acréscimo de tensão ($\Delta \sigma > \sigma_{vpa} - \sigma_{v0}$) adicional ocorre. Os resultados apresentam semelhanças entre si, porém essa pequena divergência era esperada devido a utilização da proposta de Jennings e Knight (1975) para classificar o colapso de um solo a partir de ensaios edométricos duplos.

Nas Figura 5.20 a 5.22 apresentam-se os gráficos de colapso x tensão vertical efetiva. Observase que o material compactado, em geral, apresenta uma menor porcentagem de colapso.

Figura 5.20 - Colapso x tensão vertical efetiva - ensaios edométricos duplos - BL1, BL2 e ECAS 142

Figura 5.21 - Colapso x tensão vertical efetiva - ensaios edométricos duplos - BL8, BL9, ECAS 145 e ECAS 139

Figura 5.22 - Colapso x tensão vertical efetiva – ensaios edométricos duplos – BL5, BL6 e ECAS 165

Tensão Vertical Efetiva (σ´v) (kPa)

5.6. Comparação dos parâmetros de resistência ao cisalhamento

A Tabela 5.8 apresenta os resultados de ângulo de atrito e coesão obtidos nos ensaios triaxiais, tanto para os blocos como para as amostras compactadas correspondentes. De maneira geral, os valores de ângulo de atrito do material compactado em laboratório na umidade ótima deram maiores (média de 35,1°) que os ângulos de atrito dos blocos indeformados coletados no aterro (média de 32,9°). Da mesma forma, os valores de coesão do material compactado em laboratório deram ligeiramente maiores (média de 3,5 kPa) que os valores de coesão dos blocos coletados no aterro (média de 2,64 kPa).

O terreno natural apresentou um ângulo de atrito médio de 34,9° e coesão média de 2,64 kPa. Os valores de ângulo de atrito ficaram mais próximos dos valores obtidos a partir de amostras compactadas em laboratório, enquanto que a coesão apresentou o mesmo valor obtido nos blocos indeformados coletados no aterro.
Localização / Tipo do Coesão Ângulo de Amostra Localização / Tipo do Coesão Ângulo de Bloco Área ensaio (kPa) atrito \$\$ (°) correspondente Área ensaio (kPa) atrito **\$**' (°) Terreno natural Terreno natural Janela 2 ECAS 34,6 1 / Jazida CID 1.3 / Jazida CIU 3,4 35.8 142 Área A Área A Terreno natural Terreno natural Janela 2 ECAS 2 / Jazida CID 4,0 / Jazida CIU 35,8 35.1 3,4 142 Área B Área B Fronteira: Fronteira: terreno naturalterreno natural-3 CID 1,2 30,9 BL11C CID 3 34,5 aterro aterro Área A Área A Aterro Aterro BL4C 4 CID 2,8 31,4 CID 4 34,0 Área A Área A Janela 3 ECAS Aterro Aterro 4,0 32,1 CIU 5 CID 4,3 35,6 Área A Área A 165 Janela 3 ECAS Aterro Aterro 33,2 CID CIU 35,6 6 2,0 4,3 Área A 165 Área A Aterro Aterro BL4C 34,0 7 2,3 33,5 CID CID 4 Área A Área A Janela 1 ECAS 3,9/ Aterro Aterro 2,2 33,9 8 CID 139 / Janela 2 CIU 35,0/36,7 Área B Área B 2,4 ECAS 145 Janela 1 ECAS 3,9/ Aterro Aterro 9 CID 2,8 35,2 139 / Janela 2 CIU 35,0 / 36,7 Área B Área B 2,4 ECAS 145 Aterro Aterro 32,6 BL11C CID 3 34,5 10 CID 4,0 Área B Área B

33,2

Aterro

Área B

CID

3

BL11C

Tabela 5.8 – Resumo dos parâmetros de resistência dos blocos e janelas

Aterro

Área B

CID

2,5

11

34,5

6. CAPÍTULO 6 – CONCLUSÕES

Em relação aos valores de N_{SPT} do material do aterro, verifica-se a ocorrência de valores muito baixo de resistência a penetração (N_{STP} < 10), mesmo em profundidades significativas (maiores de 10 metros). Em geral, tais resultados não são compatíveis com solos bem compactados, evidenciando uma deficiência na compactação e no controle de execução do aterro.

A permeabilidade do aterro apresentou valores baixos condutividade hidráulica (na ordem de 10^{-8} m/s). Estes valores de permeabilidade permitem a infiltração e a existência de fluxo de água no solo. Entretanto, são valores baixos para permitir a saturação de todo o aterro, mas resulta em uma perigosa deficiência no escoamento da mesma.

A permeabilidade do terreno natural nos ensaios realizados até 4 metros apresentou-se na ordem de até cem vezes maior que a do aterro. Diante disso, pode ocorrer a existência de percolação de água do solo natural (que tem maior permeabilidade) para a zona de aterro fragilizando o contato entre esses dois materiais.

A análise dos relatórios de controle de compactação em campo mostrou que há pelo menos dois picos de massa específica seca máxima de maior frequência, um no intervalo de massa específica seca de 1,61 a 1,65 g/cm3 e outro no intervalo de 1,81 a 1,85 g/cm³. De acordo com essa distribuição é como se tivessem sido utilizados pelo menos dois materiais distintos, com valores de massa específica seca máxima diferentes.

Outro aspecto importante são os resultados de ensaios de laboratório de caracterização e compactação e de ensaios de permeabilidade de campo, os quais apresentam uma expressiva caracterização dos materiais do aterro / terreno natural. Esses resultados mostram uma heterogeneidade no material estudado que apresenta areia argilosa (SC), argila arenosa pouco plástica (CL) e areia siltosa (SM).

As amostras apresentam pequenas variações nas porcentagens de solo que passam nas peneiras, esse fato explica a variação entre os valores de densidade aparente seca máxima e teor de umidade ótima, uma vez que as amostras foram compactadas na mesma energia (Proctor Normal).

Os blocos retirados no aterro apresentaram massa específica seca (1,297 a 1,504) muito menores do que a massa específica seca máxima do material compactado em laboratório (1,710 a 1,835) no teor de umidade ótimo. De acordo com esses resultados, o grau de compactação

(atual) variou entre 71,98 e 85,96. Isto pode ser explicado pela existência de tipos de solos diferentes no aterro.

As tensões de escoamento, em geral, são semelhantes para os blocos indeformados e amostras das janelas compactadas na umidade ótima. Entretanto, alguns blocos apresentaram tensões de escoamento muito baixas: bloco 7 (33 e 23 kPa – CP natural e inundado, respectivamente) e Bloco 10 (55 e 32 kPa – CP natural e inundado, respectivamente). Este fato pode ser justificado pelos altos teores de umidade. Enquanto a média de umidade nos outros blocos foi igual a 14,47%, nos blocos 7 e 10 a umidade foi de 19,407 e 21,406%, respectivamente.

Quanto à análise dos gráficos de deformação volumétrica x tensão vertical efetiva se pode concluir que o material das janelas (compactada em laboratório com $\rho_{d,máx}$ e $w_{ótima}$) é menos compressível que o material dos blocos indeformados (compactado em campo), pois praticamente em todos os gráficos as curvas das janelas mostraram sofrer menores deformações volumétricas para uma mesma tensão efetiva. Esse comportamento foi observado tanto para as amostras inundadas como não inundadas. Isto indica que o material pode ter sido compactado no ramo úmido da curva de compactação.

Outro aspecto importante é o potencial de colapso do solo, segundo proposta de Reginatto e Ferrero (1973), três (37,5 %) amostras indeformadas coletadas no aterro são verdadeiramente colapsíveis, sendo que duas (50 %) amostras na área B e uma amostra na área A (25 %).

Os parâmetros de resistência dos blocos coletados no aterro apresentaram valor médio de 32,9° (ângulo de atrito) e 2,64 kPa (coesão). Já as amostras compactadas em laboratório apresentaram valor médio de 35,1° (ângulo de atrito) e 3,5 kPa (coesão). Diante disso, o aterro, nas condições atuais, deve apresentar um menor fator de segurança.

- 6.1. Sugestões para futuras pesquisas
 - Realizar ensaios edométricos duplos em amostras compactas com teor de umidade (-2 %) e (+2 %) do valor de teor de umidade ótimo;
 - Realizar ensaios edométricos simples com tensão de inundação de 200 kPa para classificação direta da proposta de Jennings e Knight (1975);
 - Realizar ensaio de curva característica do solo;
 - Determinar o fator de segurança para o aterro nas condições atuais e em condições de teor de umidade ótimo e densidade específica aparente seca máxima;
 - Avaliar e analisar o comportamento tensão-deformação para a situação de projeto e nas condições atuais.

REFERÊNCIAS

ABNT. NBR 7250/82, Identificação e descrição de amostras de solos obtidas em sondagens de simples reconhecimento dos solos. Rio de Janeiro. Associação Brasileira de Novas Técnicas, 1982. 3 p.

ABNT. MB 33, Solo – Ensaio de Compactação. Rio de Janeiro. Associação Brasileira de Normas Técnicas, 1984. 10 p.

ABNT. NBR 7181/84, Solo - análise granulométrica. Rio de Janeiro. Associação Brasileira de Normas Técnicas, 1984_b. 13 p.

ABNT. NBR 6459/84, Solo – determinação do limite de liquedez. Rio de Janeiro. Associação Brasileira de Normas Técnicas, 1984_c. 6 p.

ABNT. NBR 7180/84, Solo – determinação do limite de plasticidade. Rio de Janeiro. Associação Brasileira de Normas Técnicas, 1984_d. 3 p.

ABNT. NBR 7182/86, Solo – Ensaio de Compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1986. 9 p.

ABNT. NBR 9604/86, Abertura de poço e trincheia de inspeção em solo, com retirada de amostras deformadas e indeformadas. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1986_b. 9 p.

ABNT. NBR 6457/86, Amostras de solo - Preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1986_c. 9 p.

ABNT. NBR 6505/95, Rochas e solos. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1995. 18 p.

ABNT. NBR 6484/2001, Solo - sondagens de simples reconhecimento com SPT – método de ensaio. Rio de Janeiro. Associação Brasileira de Novas Técnicas, 2001. 17 p.

BARDEN, L.; MCGROW, A. e COLLINS, K. (1973). The Collapse Mechanism in Partly Saturated Soil. Engineering Geology, Vol. 7, pp. 49-60.

BASMA, A.A. e TUNCER, E.R. (1992) - Evaluation and Control of Collapsible Soils. Journal of Geotechnical Engineering Division, ASCE, Vol. 118, n° 10, October, pp. 1491-1504.

CLEMENCE, S.P. e FINBARR, A.O. (1981). Design Considerations for Collapsible Soils. Journal of Geotechnical Engineering Division, ASCE, Vol. 7, n° 2-4, June, pp. 135-175.

COUTINHO, R. Q., OLIVEIRA, J. R., LIMA FILHO, M. F., COELHO, F. A. A., SANTOS, L. M. (1999). Estudo da Erosão da Encosta do Horto de Dois Irmãos – PE. 9° Congresso Brasileiro de Geologia de Engenharia (CD-ROM). ABGE, Novembro, São Paulo - SP.

COUTINHO, R. Q.; SOUZA NETO, J.B; SANTOS, L.H & LAFAYETTE, K.P.V. (2006). Geotechnical characterization of an unsaturated soil in the Barreiras Formation, Pernambuco, Brazil. The fourth International Conference on Unsaturated Soils. Carefree-AZ, USA, Abril.

COUTINHO, R. Q. e SEVERO, R. N. F. (2009). Investigação Geotécnica para Projeto de estabilidade de Encostas. In: V COBRAE. Anais, São Paulo – SP.

COUTINHO, R. Q. and SILVA, M. M. da. (2013) Geotechnical Characterization, Stability Analysis, and the Stabilization Process for a Landslide in a area of Barreiras Formation and Granite Residual Soils, 18th International Conference on Soil Mechanics and Geotechnical Engineering – 18th ICSMGE, p. 2173-2176, September / 2013. ISSMGE. Paris/França.

COUTINHO, R. Q.; SOUZA NETO, D. P.; CASTRO, B. P. F. e BARBALHO, T. F. (2015). Relatório de campanha e análise de resultados de ensaios. UFPE-PE, 233p.

DAS, B. M. Fundamentos de engenharia geotécnica. 6ª Edição. São Paulo: Thomson learning, 2007.

DNIT. Manual de pavimentação. Diretoria de planejamento e pesquisa, coordenação geral de estudos e pesquisa, instituto de pesquisas rodoviárias, publicação 719. Rio de Janeiro, 1994. 274 p.

FERREIRA, S.R.M. (1995). Colapso e Expansão de Solos Naturais Não Saturados Devido à Inundação. Tese de Doutorado. COPPE/UFRJ. Rio de Janeiro, Março,379 p.

FUTAI, M.M. (2000) - Comportamento Colapsível de Solos Tropicais Brasileiros. VII Congresso Nacional de Geotecnia, Porto, Vol. 1, pp. 193-204.

GUSMÃO FILHO, J. A., JUSTINO da SILVA, J. M, JUCÁ, J. F. T. e FERREIRA, S. R. M. (1986). Parâmetros Geomecânicos dos Solos dos Morros de Olinda. In 378VIII Congresso

Brasileiro de Mecânica dos Solos e Engenharia de Fundações - COBRAMSEF, Vol. 1, pp 199-210. Porto Alegre-RS.

JENNINGS, J.E. e KNIGHT, K. (1957). The Additional Settlement of Foundations due to a Collapse of Structure of Sand Subsoils on Wetting. Proc. of the 4 and SSMFE, vol. 1, pp. 316-319.

KNAPPETT, J. A. e CRAIG, R. F. (2014). Craig mecânica dos solos. 8º Edição. Rio de Janeiro: LTC, 2014.

LAFAYETTE, K. P. V. (2000). Comportamento Geomecânico de Solos de Uma Topossequência na Formação Barreiras em uma Encosta na Área Urbana do Recife-PE. Dissertação de Mestrado. UFPE. CTG. Engenharia Civil, Recife-PE.

LAMBE, T. W. The structure of Compacted Clays. Journal of soil mechanics and foundation division, ASCE, v. 84, No SM2, p. 1654-1 to 1654-34, 1658.

LAMBE, T. W. e WHITMAN, R. V. Soil mechanics. New York: John wiley and son, 1969. 553 p.

LIMA, A. F. (2002). Comportamento Geomecânico e Análise de Estabilidade de uma Encosta da Formação Barreiras na Área Urbana da Cidade do Recife. Dissertação de Mestrado. UFPE. CTG. Engenharia Civil, Recife-PE.

MASSAD, F. Obras de terra. 2ª Edição. São Paulo: Oficina de textos, 2010.

POPESCU, M.E. (1986). A Comparison Between the Behavior of Swelling and of Collapsing Soils. Engineering Geology. Vol. 23, Elsevier Science, Amsterdam, pp. 145-163.

REGINATTO, A. R. e FERRERO (1973) - Collapse Potential of Soils and Water Chemistry. Proceedings of the VIII International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol. 2, pp. 177-183.

RIBEIRO, J. R. C. (2015). Análise da estabilidade de falésias: estudo de caso da Ponta do Pirambu em Tibáu do Sul – RN e análise paramétrica de uma falésia hipotética. Dissertação de mestrado, UFRN. 2015.

SILVA, M. M.; COUTINHO, R.Q.; LACERDA, W.A., ALHEIROS, M. M. (2005). Caracterização geológica - geotécnica de um deslizamento numa encosta em Camaragibe, Pernambuco. IV COBRAE, Salvador, Brasil, V.1, pp. 345-360.

SILVA, M. M. (2007). Estudo geológico – geotécnico de uma encosta com problemas de instabilidade no Município de Camaragibe – PE. Tese de Doutorado. UFPE. Engenharia Civil, Recife-PE.

SOUZA, A. P. L. (2014). Estudos geotécnicos e de estabilidade de taludes da encosta do alto do padre cícero no município de Camaragibe-PE. Dissertação de Mestrado. UFPE. CTG. Engenharia Civil, Recife-PE.

SOUZA NETO, J.B. (2004). Comportamento de um Solo Colapsível Avaliado a Partir de Ensaios de Laboratório e Campo, e Previsão de Recalques Devido à Inundação (Colapso). Tese de Doutorado, COPPE/UFRJ. Rio de Janeiro, 432p.

SOILMOISTURE (1991). Guelph Permeameter 2800. Operating Instructions. Soilmoisture Equipment Corp. Santa Bárbara, USA.

SOUZA PINTO, C. de. Curso básico de mecânica dos solos em 16 aulas. 3ª Edição. São Paulo: Oficina de Textos, 2006.

TRINDADE, T. P. da.; et al. (2008). Compactação dos solos - fundamentos teóricos e práticos.1ª Edição. Viçosa: UFV, 2008.

ANEXO A - Variações de NSPT e teor de umidade com a profundidade

